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Abstract 
The term 'soil water nowcasting' signifies the insight, planning and risk management that can be 
undertaken once the knowledge of the current status of soil water storage plants can access is 
established. Understanding infiltration and water flow through the soil layers for building soil water 
models is key to nowcasting. The approach here uses a data-driven model, which combines an 
unsaturated flow multi-bucket model with a machine-learning algorithm to improve the model 
estimates using local information. This method can utilise commonly available geospatial datasets as 
model drivers. The soil bucket size is represented by the Soil Landscape Grid of Australia combined 
with PTFs to estimate the bucket size enabling the output to have a 90 m spatial and up to 1 m 
vertical resolution. Soil water maps were produced with good prediction quality (concordance = 

0.75 ; RMSE= 0.05 cm3 cm-3) for the root zone.
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Introduction  
There are no perfect data streams for all soil water applications because they vary spatially, 
temporally, and quality. Empirical models can combine these data streams accounting for different 
spatial, temporal and spatial-temporal resolutions. Datasets can be gathered using 'bottom-up,' i.e., 
proximal sensors and 'top-down,' i.e., space-borne sensors approaches and other geospatial datasets 
such as Soil Landscape Grid of Australia (SLGA) (Wimalathunge and Bishop, 2019). However, the 
challenge here is to fuse available data sources with observations to estimate more meaningful soil 
water content in space-time.  
With the advances in the soil water measuring sensor technologies, relatively low cost of the sensor 
units, wireless data transferability and near-real-time availability of the datasets through APIs, there 
are now new avenues to get high spatial and temporal coverage of soil water variability. Soil 
monitoring networks are used within farm-scale, regional-scale and country-scale. The observations 
retrieved from soil monitoring networks can combine with data sources gathered from 'bottom-up' 
and 'top-down' approaches and other soil water model outputs to develop empirical models using 
modern machine learning techniques (Lokers et al., 2016).  
With the ever-increasing availability of geospatial data sources, managing and re-arranging such 
datasets plays an essential role in empirical model development and prediction framework 
development. These geospatial datasets and soil water streams allow the creation of spatial-temporal 
data called "data-cube". The data cube is the basic unit in the modelling framework (Nativi et al., 
2017), which applies machine learning algorithms, e.g., random forest, support vector machines, deep 
neural networks. In this work, a data cube describing the study area's soil water characteristics is 
designed, then estimated soil water, and presented in spatial maps for topsoil, subsoil, and root-zone 
at key times of the agricultural systems. 

Methods 
Study Area  
The study focused on the Kyeamba sites and their observations over  18 yrs (2001-2018) from the 
OzNet Hydrological monitoring network situated in agricultural landscapes in south-eastern 
Australia. All the soil moisture probes in the network are calibrated. Kyeamba Creek is a small 

catchment that covers an area of 600 km2. The land use is predominantly grazing for sheep and cattle. The 
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topography is gentle slopes, and there are some undisturbed areas with native vegetation on the 
steeper slopes. The mean annual precipitation of Kyeamba is ~600 mm. 

Map Production Area 
The map production area (35 km2) covers four soil moisture sites (K3, K4, K5 and K7), two creeks 
(Kyeamba and Teatree) and two grazing farms (Ireland Angus and Kyeamba Station Woolshed). 

Figure 1. Kyeamba soil moisture probe network and map production area overlaying a Google 
map image (Google, 2021). 
Water balance model 
We used the water balance (WB) model developed by Wimalathunge & Bishop (2019), which add 
space and time daily soil moisture estimates to the data cube. This WB is a multi-layer, process-based 
model that better represents the vertical soil moisture variation. It is also an unsaturated model where 
water infiltrates through layers freely and continuously according to the soil properties. SLGA soil 
depth intervals are the WB model's layer thickness. The corresponding clay, sand and bulk density 
values were used to calculate the saturated volumetric moisture content (θs) using a pedotransfer 
function (PTF), which is developed by Padarian et al. (2014). The soil is assumed to be uniform 
within each horizontal layer, and the water flows vertically through the soil layers. The infiltration 
continues for all layers, and excess soil water beyond the 60–100 cm layer is assumed to be deep 
drainage and lost to the system. It also is assumed that runoff only occurs when both Layer 0–5 cm 
and Layer 5–15 cm are saturated. The modelling depth is 1 m, and the predictions spatial resolution is 
90 m, as determined by the SLGA data. The model is run on each SLGA raster cell with the 
corresponding value for the Scientific Information for Land Owners (SILO) rainfall and Modis 
Global Evapotranspiration Project (MOD16) evapotranspiration (ET). ET is assumed to be an equal 
contribution of evaporation and transpiration; however, no ET is lost in the process.  

Data-cube and incorporation of observations into the model 
Incomplete representation of physical processes can lead to errors in process-based models. For 
example, variable rooting depths, which has a major impact on evapotranspiration, is absent from the 
WB model as we assume a uniform depth of 1m. Therefore, we integrate the WB model with a 
machine learning algorithm, Random Forest (RF), which can include the local information on soil 
properties and topography to increase the relevance of predictions. As shown in Table 1, covariates 
that vary in the spatial, temporal, and spatial-temporal domain are organised in a data cube describing 
the study area's soil moisture. Discounted ET, precipitation and EVI were added as additional 
covariates, which use a weighting function to account for past or antecedent conditions since the soil 
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moisture at any time depends on the current and prior conditions of these covariates (Wang et 

al., 2011; Lessels and Bishop, 2013). 

Table 1 data-cube for soil water prediction. 
Covariate Source Resolution 

Spatial 90 m raster 

90 m raster 
90 m raster 

Spatial & temporal 500 m,  8 day 

5 km, daily 

500 m, 16 day 
90 m, daily 

Temporal 

Slope, aspect and solar 

radiation 

Soil order 

clay % (0-30,30-100 cm)  

Evapotranspiration and 

discounted ET 

precipitation and 

discounted precipitation  

EVI and discounted EVI 

WB soil moisture 

Month (1-12) 

DEM from 

Geoscience 

Australia 

ASRIS 

SLGA 

MODIS 

BOM 

MODIS 

Wimalathunge & 

Bishop (2019) 

- 

Monthly 

Evaluation of model performance  

The overall performance of the hybrid model was assessed with the observed Kyeamba moisture 

probes at the depth interval :(i) topsoil (0-30 cm); subsoil (30-100 cm), and; root-zone (0-100 cm). 

Leave-one-out-site cross-validation (LOOSCV) was used to check the quality of the model 

predictions for all sites. LOOSCV is the generalisability of the model, which involves training a 

Random Forest model for all sites excluding one site and then predicting at that site. This is repeated 

sequentially for all sites, so for each site, we have completely independent predictions. 

Two statistics were calculated to evaluate model performance: (i) Lin's concordance correlation 

coefficient (LCCC); and (ii) the root-mean-square error (RMSE).  

Mapping soil water 

Soil water maps at 90 m resolution are created using RF for topsoil, subsoil and root-zone by 

averaging (weighted) soil water at each layer. These maps give a snapshot of soil moisture at key 

times in agricultural systems, assisting with management decisions. The mapping area is described 

in Figure 1. 

Results and Discussion 

Assessment of Random Forest model predictions 

The estimate soil water at three depth interval of topsoil, subsoil and root-zone (Figure 2) with the 

prediction quality: topsoil (Concordance = 0.69, Accuracy = 0.05 cm3 cm-3); subsoil (Concordance 

= 0.72, Accuracy = 0.04 cm3 cm-3); and root-zone (Concordance = 0.75, Accuracy = 0.05 cm3 

cm-3). The subsoil is more predictable than the topsoil, with better accuracy. Subsoil moisture does 
not vary as much as topsoil moisture due to less infiltration of rainfall, greater clay content and low 

root biomass (Figure 3).  

Figure 2. Observed vs predicted soil moisture for Kyeamba sites: (a) Topsoil; (b) Subsoil; (c) Root zone 
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Spatial maps (Figure 3) were created to map soil moisture at specific times of the year in relation to 
a winter cropping season—near to sowing, mid-season and after the harvest. April maps show low 
moisture conditions before sowing, whereas the August map shows high soil water conditions due to 
the winter rain. December maps show low moisture content due to the use of moisture by crops and 
dry summer conditions. 

Figure 3. Soil moisture (cm3 cm-3) maps: topsoil, subsoil and root-zone for 1 April, 1 August
and 1 December on a 90 m grid 

Conclusion 
Soil moisture nowcasting is a primary factor in agricultural productivity. Growers traditionally rely 
on winter rainfall, but rainfall patterns can change with significant rainfall outside the regular season. 
This work addresses the problems in nowcasting soil water while meeting the grower's soil water 
requirements. The results are presented at ~90 m resolution for different soil profile depths at key 
points in an agricultural landscape. Importantly, the water balance model can be developed at a 
continental scale. Incorporating local soil moisture measurements (vertical), i.e., OzNet soil moisture 
probes, makes the model estimates more sensible. Further, the model estimates can be improved 
spatially in future using satellite soil moisture products, e.g., SMAP and Sentinel.  

References 
Lessels, J. and Bishop, T. (2013). Estimating water quality using linear mixed models with stream 

discharge and turbidity. Journal of Hydrology, 498, pp.13-22. 
Padarian et al. (2014). Predicting and mapping the soil available water capacity of Australian 

Wheatbelt. Geoderma Regional, 2-3, pp.110-118. 
Wang et al. (2011). Load estimation with uncertainties from opportunistic sampling data – A 

semiparametric approach. Journal of Hydrology, 396(1-2), pp.148-157. 
Wimalathunge, N. and Bishop, T., 2019. A space-time observation system for soil water in 

agricultural landscapes. Geoderma, 344, pp.1-13. 
Lokers, R., Knapen, R., Janssen, S., van Randen, Y. and Jansen, J., 2016. Analysis of Big Data 

technologies for use in agro-environmental science. Environmental Modelling & Software, 84, 
pp.494-504. 

Nativi, S., Mazzetti, P. and Craglia, M., 2017. A view-based model of data-cube to support big earth 
data systems interoperability. Big Earth Data, 1(1-2), pp.75-99. 

____________________________________________________________________________________________________________ 
© Proceedings of the 20th Agronomy Australia Conference, 2022 Toowoomba Qld www.agronomyaustraliaproceedings.org 




