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Abstract 

Increasingly, agronomic research is moving from small plot to paddock scale trials, where spatial, 

non-destructive measurements of crop production are needed. Estimation of above ground biomass 

(AGB) and crop phenology from satellite vegetation index time series is not new, but the methods are 

not entirely straightforward. One of the challenges is differences in the satellite index response due to 

differences in sensors, soil background, spatial scales and crop response. In this paper we focus on the 

use of the public domain Sentinel-2 imagery to estimate AGB across paddocks based on time series of 

Normalized Difference Vegetation Index (NDVI) values. Using a pooled dataset across 14 paddocks 

(mostly wheat and barley) and three growing seasons, linear regression of AGB on cumulative NDVI 

resulted in an R2 of 0.77 and a standard error of 2056 kg ha-1. Establishing the relationship for a single 

paddock and crop generally improved the R2 and standard error results, with R2 values up to 0.94 and 

standard errors of 1092 kg ha-1. While further refinements to the techniques are being developed, 

these results are being used to provide AGB estimates and growth rate differences for research in soil 

constraints and improved N application for precision agriculture. 
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Introduction 

Estimation of above ground biomass (AGB) and crop phenology from satellite time series dates back 

to the early 1980’s (e.g., Tucker et al. 1981, Asrar et al. 1985), but the methods are not entirely 

straightforward. The methods rely on time series of vegetation indices such as the Normalised 

Vegetation Difference Index (NDVI) (Rouse et al. 1973). One of the challenges is differences in the 

index response due to differences in sensors, soil background, spatial scales and crop response. We 

are developing methods to overcome gaps from clouds, such as cross calibration of different imagery 

and ground-based sources, and to normalise relationships across different paddocks. In this paper we 

focus on the use of the public domain Sentinel-2 imagery (https://sentinel.esa.int/web/sentinel/home) 

to estimate spatial AGB and growth rates across paddocks using NDVI time series. 

Methods 

Datasets used 

To evaluate the robustness of the techniques, we have pooled data from 14 paddocks in South 

Australia and Victoria, across three growing seasons (2018-2020), multiple growth stages, and four 

different crops (although primarily wheat and barley). The dataset we evaluated consists of paired 

measurements of AGB and cumulative NDVI from time series. 

Determining AGB 

Standard methods using dried and weighed sample biomass cuts (e.g., 4 rows by 1 m length) were 

used to estimate AGB. Biomass cuts were taken for each paddock at least once during the season, and 

up to 8 times, with samples taken at 9-60 sites. 
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Cumulative NDVI from satellite time series  

Atmospherically corrected Sentinel-2 satellite imagery was used to generate NDVI time series for 

each 10 m pixel within each paddock. These time series were smoothed and interpolated using the 

LOESS function in a series of steps as detailed in Fig. 1a. At each pixel, the small integral was 

calculated at daily time steps (Fig. 1b). The final dataset is a stack of images of cumulative NDVI 

through time. 

Software used 

ENVI/IDL software (Harris Geospatial Solutions, Inc., Boulder, CO, USA) was used for image 

processing. R was used for image processing and regression analysis (R Core Team 2020), and QGIS 

(QGIS 2021) for spatial data management and analysis. 

 

a) 

 
 

 

b) 

 
 

Figure 1.  Summed (cumulative) NDVI was determined for each biomass cut date using per pixel-level 

timeseries as described in (a). An example time series and the corresponding integral is shown in (b).  

Results 

The relationship between AGB and cumulative NDVI for the entire dataset is shown in Fig. 2, and the 

corresponding regression results are presented in Table 1. The pooled data resulted in an R2 of 0.77 

and standard error of 2056 kg ha-1. Regressions were also performed on seven individual paddocks 

(included in the pooled dataset) where data at multiple growth stages were available. The regression 

results for these individual paddocks (Table 2) yielded R2 values from 0.71 to 0.94, although the R2 

values for five of the seven paddocks were higher than the results of the pooled analysis. Standard 

_____________________________________________________________________________________________________ 
© Proceedings of the 20th Agronomy Australia Conference, 2022 Toowoomba Qld www.agronomyaustraliaproceedings.org



errors ranged from 1043 to 2002 kg ha-1, but as with the R2, five of the seven paddocks had lower 

standard errors than the pooled data. 

 

 

Figure 2.  Corresponding cumulative NDVI and AGB (kg ha-1) from biomass cuts (N = 2486), across 

multiple paddock, crops and years. The fitted regression results are presented in Table 1. 

 

Table 1.  Regression results for AGB (kg ha-1) and cumulative NDVI. 

Year Location Crop N Intercept Slope Adj. R2 Std. Error 

2018-20 VIC and SA Wheat, barley, canola, 

legumes 

2486 -1658.3 

 

116.5 

 

0.77 2056.2 

 

2018 

 

Woorak VIC Wheat 162 -1043.7 110.2 0.84 1043.2 

2019 Nurrabiel VIC 

Wallup VIC 

Wickliffe VIC 

Woorak VIC 

Wheat 

Wheat 

Wheat 

Barley 

120 

120 

160 

243 

-2604.8 

-1261.6 

-3543.0 

-1511.9 

 

119.6 

114.1 

149.9 

107.4 

0.82 

0.71 

0.71 
0.84 

1493.4 

2210.5 

3002.1 

1450.8 

 

2020 Nurcoung VIC 

Woorak VIC 

Wheat 

Wheat 

90 

336 

-1249.5 

-1316.8 

120.5 

116.6 

0.94 

0.91 

1091.7 

1279.6 

 

Discussion and Conclusions 

There are numerous potential uses for spatial and temporal estimates of AGB. In agronomic research 

trials, the AGB could be estimated retrospectively between biomass cut dates, and/or provide biomass 

estimates continuously across the paddock. The linear regression results presented indicate that the 

best model fits are developed for specific paddocks, using biomass cuts at three or more dates through 

the season. The combined dataset results indicate that biomass can be estimated from previous trials, 

although the R2 and standard error values may be poorer than relationships developed for a specific 
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crop and season. The linear regression results are used to calculate AGB estimates on a per-pixel basis 

for multiple points in time throughout the crop season (either targeted at particular crop development 

stages or on a daily time step). These AGB time series enable the calculation of crop growth rates on a 

per-pixel basis across each paddock.  

We are using contiguous spatial AGB and crop growth rate data, combined with soil, climate and crop 

management information, to understand the underlying physical, chemical and biological subsoil 

constraints on crop growth (e.g. soil type and/or soil nutrient profiles). A better understanding of the 

spatial distribution of these constraints, and their impact on crop growth, supports more cost-effective 

management of multiple soil constraints. We are also using the spatial estimates of AGB to estimate 

canopy nitrogen (N) and N requirements using an N dilution approach (Fitzgerald et al. 2010). 

Further refinements of the estimation techniques are being developed. One of the drawbacks on the 

use of optical satellite imagery is the dependence on clear sky conditions. To fill in time gaps, other 

satellite imagery (e.g., Planet imagery, https://www.planet.com/) or ground-based active optical 

measurements can be calibrated to the Sentinel-2 imagery and directly substituted. We are planning to 

evaluate this surrogate sensor data to quantify the improvement when time gaps exist. Another 

refinement is to determine the requirements for biomass cuts needed to establish the relationships for 

a given paddock and crop; specifically, how many sample sites, the timing and frequency.  
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