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Using remote sensing and big data analytics to assess rotation effects on wheat 
yield across the entire WA wheatbelt.  
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Abstract 
Crop rotations are an important component in agricultural systems. However, rotation experiments require 
considerable resources to implement. Here we use a suite of big data products to quickly evaluate crop 
rotations across the entire WA wheatbelt. In general farmers achieve yield benefits in the order of 10% 
using a break crop, but the magnitude of the break crop effect varies from season to season. These analyses 
can add value to other forms of data. Seasonal differences in the wheat yield response to a break crop were 
detected across the WA wheatbelt. Crop rotation also varied with location.  
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Introduction 
In recent years, the ability to capture yield, environment and management information about a specific field 
has increased. Satellite information can be processed to monitor crop yield (e.g. Donohue et al. 2018), and 
crop species (e.g. Waldner et al. 2019). Additional information such as the climate, can also be extracted 
and these data sources can be combined to enable an interpretation of agronomic processes, such as the 
benefit or otherwise of crop rotation.  Crop rotation effects on productivity in Western Australia are well 
understood at the experimental scale. Seymour et al. (2012) analysed historical experimental data and 
concluded that the yield benefit to cereal crops grown in rotation with grain legumes was in the order of 700 
kg/ha compared to cereal crops grown in sequence. Notably lower benefits were identified for cereal crops 
following pastures (~ 400 kg/ha) and oilseeds (~ 400 kg/ha).   

Yet, despite the findings that diverse crop rotations benefit wheat yields, cereal dominant rotations are still 
common. One possible reason for the reluctance to grow broad-leaf break crops is that the widely published 
benefits of break crops may not materialise for farmers (Seymour et al. 2012). However, aside from the 
recent analysis of wheat yield gaps, that demonstrated rotation can contribute to those yield gaps (Lawes et 
al., 2021), few exhaustive studies of wheat crop yield, given the previous crop, have been published.   
Here we utilise the recent advances in satellite driven crop monitoring technologies to understand the 
geographic spread of break crops across the entire WA wheatbelt. Satellite estimates of wheat yields are 
then combined with these data, and with statistical analysis, the industry wide benefits of crop rotation are 
estimated. The approach illustrates how big data analytics can help agronomic advancement and move 
beyond traditional experimentation.  

Methods 
Crop identification 
Crop species were identified from 2017 to 2020 using a combination of training data, collected annually, 
and satellite imagery from the Landsat-8 and Sentinel-1 platforms. Machine learning (random forests) were 
applied to available optical scenes, collected across the WA landscape during the growing season. The 
Sentinel-1 SAR platform provided insights about crop species when cloud cover obscured the optical signal.  
Further methodological details about the machine learning, data processing, and training data collection are 
provided in Waldner et al. (2019).  Over the course of the study, Crop ID was estimated with an accuracy of 
between 70 and 80%, across all crops (data not shown). 

Crop yield estimation 
Wheat crop yields were estimated on every field of the WA wheat-belt from 2017 – 2020 using the C-Crop 
model (Donohue et al. 2018). Briefly the C-Crop model uses the 250m MODIS platform, and climate 
information to predict yields, where the crop model allocates carbon, calculated via F-Par, to roots, stems 
and grains.   The model predicts wheat yield with an r2 of 0.71 and RMSE of ~ 700 kg/ha, when assessed 
against the mean crop yield of an individual field. Field estimates were derived from farmers yield maps. 
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information from Crop ID is subsequently used to identify which paddocks are wheat, and through these two 
tools, the expected yield of every paddock is captured.  

Creating the analytical data-frame 
Across Western Australia the ePaddocks product, that maps the boundaries of every field in Australia using a 
single Sentinel-2 image, was used to combine information about crop yield and crop ID into an identifiable 
object (Waldner et al. 2020). This was repeated for each year of the survey (2017-2020), and using a spatial 
join, we were then able to identify the previous crop grown for every wheat crop across the entire state.  
These data were paired with climate information from the SILO grid (Jeffrey et al., 2001), where growing 
season rainfall (April to October) was also calculated for every field. For each wheat crop, the year, previous 
crop, pasture or fallow management option, and the growing season rainfall, were available. 

Statistical analysis 
A basic random effects regression model, with year, previous crop (canola, legume crop, pasture or fallow), 
growing season rainfall, and all interactions, were fit to the estimated wheat yield calculated from the C-Crop 
model. Across the wheat belt, 133,800 wheat paddocks were identified and included in the analysis.  The 
predicted values for the rotation effects, on average, and for each year are explored in detail. All other effects 
were averaged to estimate the main effects of interest.   

Regional mapping of crop frequency 
The analysis focussed on understanding the rotational benefits at the individual field level. However, the data 
platform that was created was also converted to a 20 km by 20 km grid to graphically illustrate where 
particular break crops are grown, as the agricultural landscape across the WA wheatbelt is diverse. Other 
resolutions were not explored, as the objective was to visualise crop choice across the entire state, at a level 
of granularity that was visually appealing.  To summarise, the area of cereal, canola, pasture, pulse and 
fallow was expressed as a percentage relative to the total managed area (crop + pasture + fallow) for the 20 
km grid cell. The information was averaged over 4 years, temporal variations in crop choice were not 
considered here. These data are presented to illustrate where particular rotational choices dominate.   

Results 
Wheat yields averaged 1.88 t/ha, and ranged from 0.03 t/ha to 6.4 t/ha. The main effect of crop rotation 
marginally affected wheat yield across 4 seasons of the entire WA wheatbelt.  Wheat after canola, and wheat 
after legumes yielded 2.00 and 1.96 t/ha. Wheat after cereal averaged 1.84 t/ha. Wheat after pasture and 
wheat after fallow averaged 1.87 and 1.82 t/ha. The growing season rainfall across all data averaged 213mm, 
and this was used to estimate the predicted yields from the regression model.    The standard error on these 
data was 0.3 t/ha, so treatment differences between rotations across the whole dataset were not significant. 
However, the interaction terms in the statistical model were highly significant (Figure 1).  Again, effects 
were presented assuming the average growing season rainfall of the whole data set (213 mm). Despite this 
averaging of rainfall, rotation effects on wheat yield did vary from season to season.  In 2017 rotation effects 
accounted for a 250 kg/ha difference in yields. In 2018 the difference was 370 kg/ha, in 2019 it was 230 
kg/ha and in 2020 it was 160 kg/ha. In 2017 the best break for wheat was a legume crop. In 2019 the best 
break was a pasture. In 2018 and 2020 the best break was canola (Figure 1).  The strong interaction on the 
effectiveness of the break crop effect, and the dynamic nature of the break crop effect illustrates how big data 
analytics can help define how applicable a regional analysis might be to a local situation.  

Crop rotation choices were not uniformly distributed across the WA wheatbelt. Patterns emerged, partly 
influenced by rainfall zone and soil type, but influenced by factors beyond what was captured in the data. 
Future analyses would attempt to isolate these effects. Pulses featured prominently in rotations in Northern 
Coastal Agricultural Region representing approximately 20-30% of crop area, but were included in many 
rotations at low levels across the state (Fig 2B).  Oilseeds were prominent in the high to medium rainfall 
zones through-out the state (Figure 2A). On the south coast, these crops were often grown year in year out 
with cereal. Fallows featured in the drier regions of the state (Fig 2C), while pastures were present in the 
coast zone and in the far eastern reach of the wheatbelt (data not shown). Through the central wheatbelt, 
cereal dominant rotations were common. The generic analysis of crop rotations provides a reasonable 
assessment of the role crop rotations play on farms. However, at local levels, these findings may or may not 
be appropriate as the spatial distribution of residuals (data not shown), illustrated that in the southern region 
the statistical model often under predicted crop yields, and over predicted in the eastern wheat belt. 
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Figure 1. The predicted means for wheat crop yields, following a cereal, fallow, legume crops, canola or pasture 
from 2017 to 2020 in Western Australia. 

A - Canola B – Legume Crops 

C - Fallow  D – Scale 

Figure 2. The spatial distribution of the location of various cropping practices across the wheatbelt for A: 
Canola, B: Legume crops, C: Fallow. Figure 2D is the scale of cropped area that each of these practices 
represents. 
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Conclusion 
Big data analytics, that use data at the field scale, and combines information about climate, crop type, crop 
yield and field boundaries can assist to evaluate the performance and location of an agronomic practice like 
crop rotation at the state level. In time, we expect these analyses to improve, as new data such as soil type, 
and information about the farmers field are introduced into the analysis. Data science will need to evolve to 
resolve some of the issues that arise when data such as climate, soil type and shire boundary originate from 
different scales of resolution.  
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