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Abstract 

Being able to measure and map grain protein variation across paddocks before harvest, in the standing 

crop using sensors, would provide growers with timely information to plan for selective harvest. This 

could potentially lead to obtaining better grain prices and map N removal, increasing profits and 

improving year to year N management. Previous research using narrowband hyperspectral data to 

predict grain protein has focused on single sites. In this study, data were collated from a range of 

experiments that were conducted with wheat in paddocks and on research farms across several years 

and locations. Previous studies have shown that narrowband information can predict grain protein, but 

it is unclear whether this can be generalised such that predictive relationships are robust across 

locations and years. In the experiments used for this analysis, physical samples were collected from 

under the sensor at harvest and wheat analysed for protein and moisture content. Sensor readings were 

calibrated to reflectance in the field and were collected from 0-22 days prior to harvest, depending on 

the experiment. Data analysis showed that the field data were significantly noisier than lab-based 

measurement of grain protein but there are clear spectral signals for grain protein based on different 

calibration and validation approaches. Although on-header protein sensors are commercially 

available, data from satellites and unmanned aerial vehicles could expand growers’ ability to utilize 

sensing technologies enabling planning for harvest operations to improve profit and N management. 

Keywords 

Spectral analysis, partial least squares, selective harvest, N management, principal components 

Introduction 

Near infrared spectroscopy is an established method for measuring cereal grain protein in the lab and 

uses contiguous spectral information (Williams and Norris, 2001). In a field context, this type of data 

is referred to as ‘hyperspectral’. In the lab, grain can be measured, producing a ‘pure’ spectral signal 

of the target. In a standing crop in the field, spectra represent ‘mixed’ signals as they combine 

multiple canopy components within the sensor field of view, such as spikes, stems, soil, etc. Thus, the 

question of whether a protein signal can be resolved from the mixed signal will determine if this 

approach is viable for field detection and mapping of grain protein. 

It has been demonstrated that there is a protein signal for wheat within the mixed field spectra (Apan 

et al., 2006; Fitzgerald et al., 2007) but studies have been performed on single experiments. Whether 

the calibrations developed for one data set can be transferred to other data sets collected under real-

world relationships (with variation due to different sky and field conditions) is unknown and is an 

important determinant for broader use in mapping grain protein before harvest. Grain protein 

concentration can change due to many factors, including soil type, soil water status, fertilizer input, 

during the grain development and by crop type; and varies across the landscape. In wheat, grain 

protein can be a determinant of price and market-grade classification, with premiums paid for grain 

with higher protein contents. Thus, being able to map grain protein before harvest could allow 

growers to create protein zones and plan for harvest to achieve superior prices. 

There are on-header commercial sensors available for farmers to map grain protein at harvest 

(Clancy, 2019). These are useful for mapping protein for on-the-go segregation of grain. Having 

information 
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before harvest would provide additional information potentially for segregating areas within paddock 

(zoning) for growers to make more informed decisions. This project analysed ground-based 

hyperspectral data collected from field and paddock experiments sown to wheat conducted across 

eight site-years that included grain protein analyses. 

Methods 

Field data used in analysis 

Hyperspectral point-based sensor data were collected from each site-year (Table 1) using an 

Analytical Spectral Devices Fieldspec 3. From 2005-2018 data were collected with the same 

instrument from field experiments and paddocks in Victoria. In all cases, the spectral data were 

collected by positioning the sensor over wheat canopies and calibrating to reflectance using a 

Spectralon panel during collection. Although clear sky conditions were targeted, given the range of 

sites and years, sky conditions would be expected to be variable, introducing noise into the data, in 

addition to the various canopy components within the sensor field of view. Each spectral footprint 

was about 0.7 m diameter at the top of canopy. Across all data sets, biomass cuts were sampled from 

under the sensor at harvest, grain was separated from the wheat heads, dried at 40° C, weighed and 

protein measured using the Dumas combustion method. 

The eight data sets used in this analysis (Table 1) were collected from wheat across a wide range of 

growing conditions in semi-arid rainfed and irrigated environments in research plots and in-paddock. 

Spectral data were collected between the day of harvest and up to 22 days before harvest. 

Table 1.  Data sets used in the analysis. Name, year, location, dates spectra collected, and grain harvested. 

The last column indicates the diversity of the data: data collected from research plots or grower 

paddocks; whether conditions were rainfed (R), irrigated (I) or both; or collected from experiments with 
different times of sowing (TOS). 

Data set & 

year 
Location Spectra 

collected 
Grain harvested Notes (R=Rainfed, 

I=Irrigated, TOS = Time 

of Sowing) 

FISE 2004 Maricopa, AZ (USA) 18 May 2004 26 May 2004 Plots (I) 

ORL 2004 Horsham, VIC 3 Dec 2004 15 Dec 2004 Plots (R & I) 

ORL 2005 Horsham, VIC 21 Nov 2005 13 Dec 2005 Plots (R & I) 

ORL 2006 Horsham, VIC 8 Dec 2006 8 Dec 2006 Plots (R & I) 

AGF 2007 Horsham, VIC 27 Dec 2007 12 Dec 2007 Plots, TOS1 (R & I) 

9 Jan 2008 20 Dec - 2 Jan 2008 Plots, TOS2 (R & I) 

AGF 2008 Horsham, VIC 8 Dec 2008 8 & 15 Dec 2008 Plots, TOS1 & 2 (R & I) 

MRS 2008 Walpeup, VIC 10 Nov 2008 10 & 25 Nov 2008 Plots, TOS1 & 2 (R & I) 

FF 2018 Kaniva, VIC 28 Nov 2018 28 Nov 2018 Paddock (R) 

Data analysis 

The spectral data were processed using the following steps: 1) The full range of spectral data (350-

2500 nm) were subsampled to the 750-1750 nm range (Figure 1a), which is typical for laboratory 

protein analysis, 2) the spectra were converted to log (1/R), (where R=reflectance value) and a 

multiplicative scatter correction was applied (Figure 1b, 3) calibrations were developed with the pre-

processed spectra using a partial least square (PLS) regression to predict grain %N (dry weight basis). 

found by  as) used in each of the calibrations wcompNTable 2, omponents (The number of PLS c

optimizing the validation RMSE values. Two model validation strategies used to determine the ability 

to predict grain N content were: 1) leave-year-out (one trial at a time selected as validation set and 

remaining used for calibration set), 2) random subsampling (25% of data selected for validation). Two 

criteria the data are required to meet for these analyses are: a) validation reference values must lie 

within the distribution of the calibration set and b) spectra must be similar, as determined by a 

principal component analysis (PCA) score plot (not shown).
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(a) (b)

Figure 1.  (a) Hyperspectral data collected from field samples with 750-1750 nm wavelength range used in 

analysis. (b) Example of high and low grain %N spectra, 1/R log transformed (R=reflectance). 

Results and Discussion 

For the leave-year-out approach, R2 values for the validation sets ranged from 0.05 to 0.88 and RMSE 
0.13 to 0.68 (Table 2 and Figure 2a – with a low and high R2 data set). When validation samples were 

selected randomly with 25% of the global data used for prediction, R2 values ranged from 0.60 to 0.72 

and RMSE 0.25 to 0.29 for five different, randomly selected data sets (Table 2 and Figure 2b with 

example 1:1 line fits). The random sampling predicted the fit better because it met the criteria above 
(a and b) for the data, while for the leave-year-out approach, points aligned within the calibration data 

cloud, but not every year contained the full range of possible variation for grain %N. 

In operation on-farm, global calibrations would be developed across sites and years and a leave-year-

out method could be used to predict grain protein for a given paddock in the current year. As seen in 
Table 2, for some site-years this could be very successful for prediction but not in others. There was 

an overall better fit to the data using the random approach. Operationally, this approach could be 

implemented by including a small subset of the data from the new year in the calibration set to predict 

protein for the remainder of the samples in the set. 

A more accurate approach to validation than the global approach would be through development of 
individual calibrations using PCA to group different historical data sets, representing different sets of 

conditions (which might be a combination of environment, cultivar, lighting conditions, etc.). During 

spectral collection before harvest, a few small samples of developing grain could be collected and 

based on PCA of the grain spectra, the appropriate calibration curve selected. 

Alternatively, a global calibration as presented here may be sufficient to delineate two or three zones 

in a paddock that could be useful for managing operations. An on-harvester protein sensor could then 

be used to measure %N (or protein) content more accurately within each zone at harvest. 

Table 2.  Paired calibration and validation (cal/val) results for grain %N predictions using two 

approaches (leave-year-out and random 25%). N = number of data points in validation, RMSE = root 

mean square error, Ncomp = No. of PLS components used to build the validation relationship. 

Leave-year-out Random sampling 

Data set 

(see Table 1) 

N R2 RMSE Ncomp Set N R2 RMSE Ncomp 

FISE 2004 374/36 0.63/0.50 0.30/0.32 8 1 307/103 0.80/0.72 0.22/0.25 19 

ORL 2004 364/46 0.81/0.45 0.20/0.51 19 2 307/103 0.72/0.66 0.26/0.27 14 

ORL 2005 363/47 0.55/0.88 0.32/0.22 7 3 307/103 0.66/0.62 0.29/0.28 9 

ORL 2006 389/21 0.78/0.80 0.23/0.23 19 4 307/103 0.81/0.60 0.22/0.29 21 

AGF 2007 362/48 0.03/0.18 0.51/0.13 1 5 307/103 0.82/0.68 0.21/0.26 24 

AGF 2008 268/142 0.55/0.37 0.35/0.37 6 

MRS 2008 394/16 0.70/0.20 0.27/0.45 10 

FF 2018 356/54 0.52/0.05 0.31/0.68 5 
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(a) 

(b)

Figure 2.  Examples of line fits of predictions for a ‘good’ season and a ‘bad’ fit for (a) leave-year-out, and 

the two examples of predicted fit for (b) random sample. Line fits shown along 1:1 line with regression 

statistics for calibration (cal) and validation (val) data. 

Conclusion 

Using hyperspectral data to quantify grain %N (or protein) just prior to harvest could assist growers 

make more informed decisions to harvest grain to meet market quality grades, leading to higher prices 

received. Although predictive equations based on field-collected spectral data is much noisier than 

lab-based predictions of grain protein, it appears that, despite this noise, reliable calibrations can be 

established allowing estimation of grain protein and delineation of manageable zones for harvest.  

As hyperspectral sensors become more readily available on ground and aerial-based platforms, this 

type of data will be collected more routinely. Establishing calibrated relationships is fundamental to 

realising delivery of data to growers that can be easily managed and interpreted. Further analyses may 

explore targeted selection of wavelengths specific to protein detection, which could inform 

multispectral approaches to protein detection and mapping, useable on aerial and satellite platforms. 
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