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Abstract 

A major challenge of high-throughput phenotyping is to build the relationship between data-derived traits 

and empirically measured traits that usually are biologically related. More general relationships unrestricted 

to specific situations can be inferred from synthetic dataset generated by radiative transfer models (RTMs). 

However, this approach can lead to an “ill-posed” problem, resulting in unsatisfactory inversion results for 

target traits retrieval. This research investigated a practical way to introduce biological constraints in 

‘synthetic’ training data by integrating a crop growth model with an RTM to alleviate this problem. Our 

result shows this integration made a much more accurate estimation for target traits. Furthermore, this 

simulation framework allows us to determine the precision of prediction from reflectance of traits in different 

environments and situations. These findings can benefit the application of high-throughput phenotyping in 

precision agriculture and plant breeding.  
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Introduction 

Imagery methods have been used to monitor and investigate vegetation since the 1960s. Recently, these 

methods have been deployed in more proximal sensors (planes, drones, vehicles) that allow the analysis of 

vegetation at higher resolutions (sub-centimetre scale) in a research field that is sometimes referred to as 

‘high-throughput phenotyping’ (HTP) (e.g. Chapman et al. 2018).  HTP methods based on sensor and 

imaging technologies can rapidly measure a large number of crop traits across time and space in a cost- and 

labour-efficient way, which can benefit applications in precision agriculture and plant breeding. A major 

challenge of high-throughput phenotyping is to build the relationship between data-derived traits and 

empirically measured traits that usually are biologically related. For example, some vegetation indices (e.g. 

NDVI, EVI, etc.) computed from canopy reflectance had been developed to be used to predict LAI (e.g., 

Dong et al. 2019).There is an increasing interest of the application of ‘model inversion methods’ to radiative 

transfer models (RTMs) (e.g., Berger et al. 2018). These methods provide an easier way to develop more 

general relationships unrestricted to situations for variable retrieval by using RTMs to generate a training 

dataset that represents the entire range of possible situations varying in crop types and growth status as well 

as observation configurations (e.g., Baret and Buis 2008; Dorigo et al. 2007).  

Although model inversion methods provide a reasonable way for estimating crop or vegetation variables 

from remote sensing data, none of them can avoid the “ill-posed” problem.  However, this problem can be 

alleviated by using prior knowledge to strengthen constraints on individual variables or between variables. 
Linking a crop growth model (CGM) to RTM provides a more straightforward solution to address this “ill-

posed” problems by directly constraining the sets of RTM input parameters that contribute to canopy 

reflectance in two ways. The first way is to calibrate/sparameterise CGM using canopy reflectance and then 

using the calibrated CGM to predict target crop traits.  Such an application mode can directly retrieve those 

variables not included in RTMs, such as crop yield, and provide dynamic estimation across the whole growth 

season (e.g., Thorp et al. 2012; Zhang et al. 2016). The other way is to convert CGM output variables into 

input variables of RTM and then apply the model inversion method on these constrained input variables and 

corresponding canopy reflectance. Unfortunately, this approach has been rarely discussed or explored.  

This research focused on the estimation of total leaf area index (LAI, m2 m-2), leaf chlorophyll content (Cab, 

µg cm-2), dry leaf weight (Cm, g cm-2) and leaf water content (Cw, g cm-2) of wheat in four locations across 

the Australian Wheatbelt. The overall objective was to investigate inversion procedures based on a deep 
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learning approach (feedforward neural network, FFNN) for crop trait estimation, with a special focus on 

alleviating the “ill-posed” problem in model inversion through linking a CGM (APSIM) and a RTM 

(PROSAIL) to generate a higher quality training dataset.  

Methods 

Couple APSIM and PROSAIL: The Agricultural Production System Simulator (APSIM) Next Generation 

(https://www.apsim.info/apsim-next-generation/) is the new version of APSIM, which is simpler and faster 

than the classic version (i.e. 7.10., D. Holzworth et al. 2018). The application of APSIM to simulate the 

dynamics of many crop traits has been validated in many regions worldwide. PROSAIL combines 

PROSPECT and SAIL, which can simulate directional canopy reflectance (Jacquemoud et al. 2009). The 

current version of the PROSAIL (PROSAIL_D) can be downloaded from 

http://teledetection.ipgp.jussieu.fr/prosail/. The coupling of APSIM and PROSAIL is srealised by passing 

output variables of APSIM to PROSAIL as input variables. This permits the coupling model to estimate 

canopy reflectance from 400 to 2500 nm in 1 nm interval at defined observation conditions (determined by 

latitude, day of the year, and daytime) given that required parameters are specified. The transformation of 

variables is based on a series of equations and more details referred to Chen et al (2021). 

Generate synthetic dataset: A defined set of conditions for wheat growth (scharacterised by genotype, 

environment and management) and observation (determined by local latitude, day of year and daytime) were 

set up to run APSIM and PROSAIL for simulation of crop traits and canopy reflectance, which resulted in 

two types of synthetic datasets. The first dataset (p_data) uses the ranges of the input parameters converted 

from APSIM outputs but allows PROSAIL to be run using samples from full parameter space for any 

combination of inputs. The second dataset (ap_data) directly uses input data converted from APSIM outputs 

to explore a sub-space of input parameters (i.e., limited by the APSIM biology) to run PROSAIL. More 

details about the generation of these two datasets can be found in our previous work (Chen et al. 2021). In 

total, p_data contain 100 000 unique samples (90 000 in p_train, 10 000 in p_test) while ap_data contain 2 

149 226 unique samples (90 000 in ap_train, 10 000 in ap_test, 2 049 226 in ap_rest). 

Build, train and evaluate FFNN: The FFNN model was implemented using Keras in TensorFlow 2.3.0 

(https://www.tensorflow.org/). Two simulation experiments were designed to evaluate the effect of limiting 

the PROSAIL input parameters to the sub-space as determined by the APSIM. The FFNN model in two 

simulation experiments shared the same model structure (hyperparameters):  3 hidden layers and 512 units 

for each hidden layer and using 0.001 as learning rate, ‘softplus’ as activation, ‘Adamax’ as optimiser. More 

details about the determination of FFNN’s optimal structure could be found in Chen et al (2021). The input 

layer included 1101 dimensions of 1-nm reflectance bands from 400-1100 nm and the output layer included 

four target variables (i.e. Cab, Cm, Cw, LAI). The first simulation experiment used p_train as a training set. 

It evaluated the trained model on p_test, while the second simulation experiment used ap_train as a training 

set and evaluated the trained model on ap_test and ap_rest. 

Results 

Compared with the performance of the FFNN model trained on p_data, Figure 1 indicates that the use of 

ap_data generated by coupling APSIM and PROSAIL significantly improved FFNN’s performance for 

estimation of all target variables using reflectance bands in 400-1100 nm. This improved model performance 

presented in both average precision (smaller MAE and RMSE) and stability (narrower uncertainty range, 

smaller standard deviation of AE) according to statistical results. For instance, compared with test results of 

the trained model using p_data, the use of ap_data for total LAI estimation narrowed the uncertainty range of 

AE from 0~1.093 m2 m-2 to 0~0.041 m2 m-2 and also reduced the standard deviation of AE (from 0.063 to 

0.004 m2 m-2), MAE (from 0.061 to 0.005 m2 m-2) and RMSE (from 0.087 to 0.006 m2 m-2 ). Compared with 

simulated results from other model inversion studies (Atzberger 2004; le Maire et al. 2008; Upreti et al. 

2019), our results from p_data have ~10 times smaller RMSE for estimation of LAI/Cab and ~3 times 

smaller RMSE for Cm/Cw due to the use of better architecture and algorithm used in a neural network as 

well as complete information included in massive hyperspectral bands. Furthermore, our results from 

ap_data had even higher precision than results from p_data due to the advantages mentioned above plus the 

biological constraints imposed on the co-distribution of PROSAIL input variables.  
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Figure 1 Empirical accumulated density distribution for absolute error (AE) of prediction on different datasets. 

AE is the difference between the actual value of the target variable and its prediction.  

 

The fully trained FFNN model trained on ap_train were used to estimate target variables on ap_test and 

ap_rest. Figure 2 shows that the model can perform well on broad unseen samples from the same situation, 

resulting in low RMSE and RRMSE (RRMSE is the ratio of RMSE divided by the mean of true values) of 

all target variables. Additionally, the model continued to make good estimations at different levels of the true 

value, although larger true values tended to have a higher probability of larger absolute errors. 

 

Figure 2 True value (generated by APSIM) of target variables and their predictions on two test datasets (A~D 

for ap_test and E~H for ap_rest). RRMSE is the ratio of RMSE divided by the mean of true values. 

 

The model trained on ap_train performed similarly well in various growing situations varying in genotypes, 

sites, years and sowing dates (omitted for space). These slight differences in box plot of prediction error 

across conditions were likely resulted from the varying density distributions of true values of target variable 

in corresponding situations as prediction accuracy for target variables at different true value were slightly 

different (see Figure 2). At the seasonal scale, the seasonal prediction error of target variables (seasonal 

RMSE or seasonal RRMSE) was not associated with the growth pattern characterised by growing season 

length (GSL) (omitted for space). Figure 3 shows true and predicted values of total LAI and Cab during 

growing season (from emergence to maturity) with short, medium and long GSL. During the growing 

season, higher prediction error for total LAI usually appeared at the end of the growing season where true 

value were larger (Figure 3A~C), while higher prediction error for Cab, Cm and Cw tended to occur at the 

beginning of the growing season (Figure 3D~F for Cab and results for Cm and Cw are not shown due to 

limited space). 
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Figure 3 True and predicted value for total LAI (A~C) and Cab (D~F) during growing season with varying 

growing season length (GSL). ‘pred10’ and ‘pred12’ indicate the predicted value inverted from reflectance 

captured at 10:00 and 12:00, respectively. ‘true’ indicates the simulated value generated by APSIM. 

 

Conclusion 

This research demonstrated that the integration of APSIM and PROSAIL could generate higher quality 

training data, which can better characterise the real canopy srealisation and lead to more accurate estimation 

for target variables in theory. Although this trained FFNN model might not perform as well as presented here 

when it is applied to retrieve variables from real observation data due to measurement and model 

uncertainties, it is expected to be able to make relative good performance according to the difference of 

estimation precision on simulated and observed data from other model inversion studies. 
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