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Abstract 

Crop yield prediction is a challenging topic that has been studied worldwide. Many approaches have 

been proposed to address this challenge. Generally, these approaches follow two paths: physical 

models (PMs) calibrated with statistical analysis and data-driven machine learning models (MLs). 

There has been little study on the difference between the two approaches in crop yield prediction. A 

comparison between a simple empirical model with a physical basis and ML is presented in this 

paper. Data for wheat was used in this study. The PM has been developed using satellite-based 

vegetation indices and climate data. The PM has been compared to eXtreme Gradient Boosting 

(XGBOOST) to examine the potential of ML in learning from the data without the need for domain 

knowledge of the process. The results suggest that ML models can be comparable to PM models in 

their prediction performance. XGBOOST does not require domain knowledge to generate robust 

predictions, yet it requires data representativeness to develop reliable outcomes. 
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Introduction 

The relationship between crop yield and climate is crucial to understand crop production. Many 

studies explored the linkage between climatic variables and crop yield using either mechanistic (PM) 

or machine learning (ML) models. The difference between PM and ML is that PM are built using  

empirical equations based on the knowledge of the process, whereas ML models are data-driven and 

built with a minimum knowledge of the process (Roberts et al., 2017). One of the leading PM is The 

Agricultural Production Systems sIMulator (APSIM) (Keating et al., 2003). This model has been 

used in several studies to understand the impact of climate on crop yield (Luo et al., 2005; 

Deihimfard et al., 2018; Ahmed et al., 2016). Other studies have focused on ML models (Fajardo and 

Whelan, 2021; Filippi et al., 2019). Simpler models can be more effective than the complex model if 

the causal relationships between the most influential factors are captured well; for example, French 

and Schultz (1984; F&S) developed a simple model to predict wheat yield by determining a 

relationship between water use and wheat yield. The F&S model is very simple and widely used for 

estimating potential crop yield. The differences in the types and complexities of models raise a 

question of which model to use to achieve reliable and superior results for yield prediction? To 

answer this question, a comparison between a simple PM and ML has been performed to explore the 

predictive power of these two types using climatic and vegetation indices data.  

Methods 

Study area 

The study area includes 49 New South Wales (NSW) paddocks near Albury with crop yield data 

available between 2016 and 2019; 2016 was a year of record high rainfall, whereas 2018 had the 

lowest rainfall on record. The in-season rainfall reached a mean across the paddocks of 398 mm 

(2016), 205 mm (2017), 121 mm (2018) and 201 mm (2019). This fluctuation in the amount of 

rainfall is important and can be used to quantify the wheat yield. 

Data 

Pixel-based interpolated wheat yield maps were obtained from an AgTech company. The wheat maps 

were provided at a 10-metre spatial resolution. Daily rainfall and solar radiation rasters were sourced 

_____________________________________________________________________________________________________ 
© Proceedings of the 20th Agronomy Australia Conference, 2022 Toowoomba Qld www.agronomyaustraliaproceedings.org



from the ‘SILO’ Australian climate database at ~5 kilometre resolution (Jeffrey et al., 2001). Daily 

evapotranspiration (ET) rasters were sourced from The Moderate Resolution Imaging 

Spectroradiometer (MODIS 16) at ~500 metre resolution (Mu et al., 2011). Accumulated rainfall, 

solar radiation and ET were calculated from the 1st of May to 15th of September for each season. 

Cloud-free Sentinel-2 data were collected and used to calculate a three-red-edge vegetation index 

(TREI) (Eq.1) at 20 metre resolution, the resolution of the red-edge bands in the Sentinel-2. A time 

window was set from the 15th to the 30th of September for each season to collect the high-quality 

images (cloud-free images). This time window was selected as one during which having a yield 

prediction would help farmers for decisions related to marketing and for managing supply chain 

logistics. All data were resampled to the resolution of the yield maps (10 metre) and used for further 

analysis.  

Models 

A simple empirical model with a physical basis (PM) 

For this study, a simple empirical model with a physical-basis was used which uses rainfall and 

vegetation index for wheat yield prediction. The PM follows similar concept to the F&S, however, the 

PM accounts for the within-field variability by exploiting the information from the vegetation index 

so that pixels with high values are predicted differently than the pixels with low values. Furthermore, 

by capturing the changes of within-season rainfall, solar radiation, ET and using the vegetation 

indices, yield can be calculated. The model was built using a mathematical equation that accounts for 

the energy conversion (EC) (Eq.2) to biomass and the correlation between the result of the EC and the 

TREI to calculate the potential yield in t ha-1 (Eq.3). A parameter (A) was used to scale the 

relationship between EC, TREI and yield depending on seasonal rainfall. In this work this means that 

we had a different parameter value for rainfall values. The equations are: 

TREI = (RE2 − RE1) ∗ (RE3/RE1); (1) 

Energy conversion (EC) = Solar irradiance + Rainfall – Evapotranspiration; (2) 

Yield t ha-1 = TREI * EC * A; (3) 

where RE1, RE2 and RE3 in Eq.1 are the red-edge bands 1 (705nm), 2 (740nm) and 3 (783nm). The 

TREI is a three-red-edge bands vegetation index which captures the changes in the red-edge region. 

The red-edge region based indices have been successfully used for biomass and grain yield prediction 

(Kanke et al., 2016).    

For each season, Eq.1, Eq.2 and Eq.3 were used to calculate the potential yield on a 10m pixel basis. 

Then the mean of potential and actual yield per-field was calculated for the assessment of prediction 

quality. The parameter A changes with the change of the amount of rainfall and two rainfall intervals 

(<250 mm, and >251 mm) were determined for the parameter tuning.  Therefore, model calibration 

included tuning the parameter until lowest RMSE was achieved. Years 2017, 2018 and 2019 fell into 

one interval and these years were used to validate against each other. For 2016, the calibration was 

performed, but the validation from different years was not available. Therefore, the results from this 

year are calibrated results only. 

Data-driven model (XGBOOST) 

We used the eXtreme Gradient Boost (XGBOOST) to develop a data-driven model in this study.  

XGBOOST is a decision-tree-based ensemble method that applies boosting on the weak learners 

(regression trees) where the weak learners of the XGBOOST learn sequentially from the residual of 

the previous weak learner (Chen and Guestrin, 2016). XGBOOST takes into account the trade-off 

between bias and variance (Nielsen, 2016). XGBOOST was used for the comparison with the simple 

PM. A leave-one-year-out-cross-validation was used for training and validation where three years 

were used for training and one year for validation as for the PM. As with the PM, the mean of the 

predicted and actual yield for each paddock was calculated. 

Results and discussion 

The results from the PM and ML are shown in Fig.1 and 2. It is clear that the PM model predicted 

yield better than XGBOOST in 2016 (2016 was calibration results in the PM) and 2017, but 
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XGBOOST was better than the PM in 2018 and 2019 (Fig.2). In 2016, the predicted yield for 

XGBOOST was higher than the observed and this was because of the amount of rainfall which the 

model used as predictor was the highest (mean rainfall 398 mm) compared to the other years.  In 

2017, XGBOOST did not predict yield well where the concordance correlation coefficient (CCC) = 

0.14, and this was because the observed yield (Fig.1) was very high compared to the amount of 

rainfall (mean = 205 mm) in that year. Therefore, we conclude that XGBOOST requires more data 

from different years and inclusion of more factors that might help XGBOOST to explain this 

contradiction (yield vs rainfall). In 2018 and 2019, XGBOOST had higher predictive quality (CCC = 

0.83 for 2018 and 0.81 for 2019) and this was for two reasons. First, in 2018, the observed yield was 

the lowest (< 4 t ha-1) compared to the other years and this could be explained by the rainfall amount 

(mean = 121 mm). In 2019, the observed yield was also explained by the rainfall amount (mean = 201 

mm). This indicates that XGBOOST could identify the relationship between the yield and rainfall. On 

the other hand, PM did not show any fluctuation in the results. However, it was based on a simple 

regression equation which was defined based on the knowledge of the impact of the rainfall on crop 

yield. The PM required the parameter to be tuned based on the rainfall intervals until an optimal result 

was achieved; the values used were 0.0035 and 0.0040 for the rainfall intervals <250 mm and 

≥250mm.  

Figure 1. Actual versus predicted wheat yield obtained from (A) the PM and (B) the XGBOOST. Red, 

blue, green, and black points represent 2016, 2017, 2018 and 2019 respectively. CCC is the Lin’s 

Concordance Correlation Coefficient. 

It also can be seen from Fig.2 that XGBOOST yielded higher MAE (>1.5 t ha-1), MAPE (~0.5 t ha-1), MSE (~3 t 

ha-1) and RMSE (>1.5 t ha-1) in 2016, MAE (>1 t ha-1), MAPE (~0.2 t ha-1), and RMSE (>1.25 t ha-1) and MSE 

(>1.5 t ha-1) in 2017. This also can be explained by the fluctuation of the rainfall vs yield relationship in those 

years. In contrast, XGBOOST gave almost similar MAE, MAPE, MSE and MSE to the PM in 2018, and lower 

in 2019. This indicates the ability of the ML in finding patterns similar or even better than the PM when it was 

supplied with representative data.  

Figure 2. Bar-plot of the Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Mean 

Square Error (MSE) and Root Mean Square Error (RMSE). 
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Finally, the strength of the PM is that it is less complex and easier to interpret compared to the ML 
model. However, it is known that PM may not adequately account for all processes in crop 
production, and in particular, the impact of management practices. The PM also requires careful 
tuning of the parameter to achieve lowest MAE, MAPE, MSE and RMSE. Therefore, the PM 
requires expert knowledge to achieve reasonable results. Unlike the PM, the XGBOOST requires 
minimum knowledge about these various processes when fitting the model. It relies on the 
observations to find casual relationships between yield and the supplied factors. 

Conclusion 
In this study, a PM and ML method (XGBOOST) were compared for wheat yield prediction. The PM 
provided more stable predictions than XGBOOST. The advantage of the PM is that it is simple and 
easy to interpret. However, this model required expert knowledge for parameter fitting to achieve 
optimal results. In contrast, XGBOOST only requires representative data to achieve good results, and 
it is very flexible in respect of the addition of more data. Future studies are required to include more 
observations from different years to cover the interaction between yield and rainfall to achieve better 
predictions. Future studies can also determine specific constants for the PM based on specific rainfall 
intervals.     
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