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Abstract 
Existing approaches for determining nitrogen (N) requirements typically involve measuring biomass 
and sensing near-infrared-based crop reflectance indices. There is potential for automated assessments 
of tiller counts, plant size and colour using machine vision to help indicate plant N status. Existing 
demonstrations of machine vision systems are typically for a single field rather than multiple fields. A 
barley and wheat field study has been conducted to identify robustness of machine vision across 
multiple sites for assessing biomass, and plant N status and concentration. Three N trial sites were 
established in Western Australia and South Australia during the 2020 season with low and rich-N 
strips. Each strip and the paddock were sampled in five to seven locations for plant N uptake, plant N 
concentration, and plant response using crop dry biomass and machine vision cameras. Machine 
vision algorithms were implemented on oblique images to extract indicators of vigour (colour) and 
physical size (line length and density that represent tillers and branches). Linear regression analysis 
identified that a normalised green red difference index from the colour machine vision system was 
strongly correlated with biomass and could add value to biomass and plant N assessment. Further 
work is to incorporate machine vision parameters into a data-driven N decision making method. 
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Introduction 
Nitrogen (N) represents 30-40% of input costs for cereal grain crops and this cost is continually 
increasing. Automated crop sensors can help assess biomass to guide site-specific plant N status 
assessment. These crop response measurements are typically determined from colour indices in near-
infrared wavelengths using proximal sensors (Poley & McDermid 2020) and satellite imagery (Revill 
et al. 2019) and linked with machine learning models (Chlingaryan et al. 2018), N dilution curves 
(Wang et al. 2017) and/or biophysical models (Lawes et al. 2019) to assess N requirements. 
Reflectance sensing (e.g. the normalized difference vegetation index; NDVI) can have inconsistent 
correlations with N status across different stages and seasons (Porter 2010). For example, Colaço and 
Bramley (2020) report the highest coefficient of determination (R²) of 0.65 for the normalized 
difference red edge index (NDRE) vs mid-season N uptake univariate models. Biomass is also 
commonly assessed using height measurements from a LiDAR scanner (e.g. Colaço et al. 2021a with 
R²=0.62 for a single field). 

An alternative approach to assess colour indices is with a colour machine vision system which is 
potentially lower cost (<$600) than proximal crop reflectance sensing (~$10 000) and can be linked 
with N decision making. Colour indices have been demonstrated to be correlated with biomass with 
R²=0.59-0.78 from UAVs (Jibo et al. 2019), and plant N concentration in a single field from a 
normalised green red difference index (NGRDI) in the RGB colour space with R²=0.75 (Jiang et al. 
2019). Existing research focusses on a single site, and the ability for machine vision to assess biomass 
and plant N status is required across multiple sites. There is also potential to investigate the use of 
other colour spaces, including HSV (hue, saturation, value) and L*a*b* that may more accurately 
assess colour as they separate the lighting and colour information. Machine vision algorithms can also 
assess physical size features including fractional canopy cover using a plant segmentation algorithm 
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(Ashapure et al. 2019) and leaf/branch counts (density) and geometry (area, height, width) using a line 
detection algorithm (Boyle et al. 2015).  

This paper reports a field study to identify how machine vision could complement other sensing 
technologies in an automated biomass and N sensing system for wheat and barley across multiple 
sites. This was achieved by establishing N application trials and collecting machine vision, biomass 
and plant N status data at growth stage 31 (GS31) when in-season N may be applied. Data analysis is 
presented to identify the machine vision inputs most strongly correlated with biomass and plant N 
status and, in further work, could link with a N application sensing system. 

Methods 
Field sites and data collection 
Three field trial sites were established in SA and WA with low and rich-N strips as detailed in Table 
1. Table 2 outlines the data collected at each site at GS31. An action camera Sony FDR-X3000 action 
camera (1920 x 1080 pixels, $550) was selected with image stabilisation to compensate for camera 
shake and robustness to low light. The machine vision camera was installed to capture oblique images 
of the crop. Biomass and plant N concentration were measured from dry matter cuts during plant 
sensor data collection in each sampling location. Plant N uptake was determined by multiplying the 
plant N (%) and biomass. 

Table 1.  Field trial sites for sensor data collection with different N treatments. 
Site WA-Dandaragan SA-Tarlee SA-Tumby Bay 
Crop Wheat Barley Wheat 
Number of sampling locations in each strip 5 7 5 
N applied in low, mid, and rich strips until 
GS31 (kg N/ha) 30.0, 72.0, 114.0 9.9, 46.7, 

92.7 16.2, 29.2, 108.2 

Closest BOM weather station  Badgingarra Research 
Station (39.4 km) 

Roseworthy 
(34.1 km) 

North Shields (Port 
Lincoln) (19.1 km) 

Accumulated rainfall until GS31 (mm) 84.7 59.6 76.6 
 
Table 2.  Data collected in each sampling location at GS31 at each field trial site. 

Data Category Data types 
Inputs Machine vision –

Sony X3000 action 
camera 

Machine vision parameters: cover (%); colour channels 
in RGB, HSV and L*a*b* colour spaces; colour indices 

using R, G, B; physical size parameters cover, line 
geometry (pixels) 

Outputs Dry biomass Biomass (kg/ha) 
 Plant N status Plant N uptake (kg/ha) calculated from biomass over 

area, plant N concentration (%) 
 

Data processing and analysis 
After data collection at GS31, the plant sensor data and images corresponding to each sampling 
location were extracted. Fractional canopy cover was measured using a plant segmentation algorithm 
(Kumar & Miklavcic 2018), and the average colour index across the segmented plant pixels in each 
image were calculated after extracting the individual red (R), green (G) and blue (B) channels from 
the RGB images; hue/colour, saturation/shade and intensity/lighting channels from the HSV images; 
and L*, a* and b* from the L*a*b* images (Ashapure et al. 2019). Line detection algorithms were 
implemented to count the leaves and branches per unit area and their areas, widths and lengths (Boyle 
et al. 2015). Linear regression analysis was applied between the machine vision parameters and 
biomass and plant N status. These are represented as Pearson’s correlations (r) and coefficients of 
determination (R²).  



Results 
Table 3 compares the correlations and coefficients of determination between the machine vision 
parameters and biomass and plant N status. The machine vision parameter that had the strongest 
correlation with biomass and plant N status was NGRDI (r=0.841, R²=0.71 and r=0.722, R²=0.52, 
respectively). This is comparable with machine vision systems reported in the literature using 
machine vision systems from UAVs (up to R²=0.78) and LiDAR (R²=0.62) at a single site. This 
demonstrated the robustness of the machine vision system across multiple sites and indicates potential 
to incorporate machine vision into data-driven biomass and plant N assessment models for N decision 
making methods (e.g. Colaço et al. 2021a).  

From Table 3, the machine vision parameters were better correlated with biomass than plant N status 
which may indicate a need for other site-specific information. This may be achieved by combining 
multiple machine vision parameters, e.g. colour and physical size, to estimate biomass and plant N 
status.  

Table 3.  Linear regression analysis between machine vision parameters and biomass and plant N status 
where * indicates statistical significance (p<0.05). 

Machine vision parameter Biomass (kg/ha) Plant N uptake 
(kg N/ha) 

Colour space Feature r R² r R² 
RGB R 0.030 0.001 0.024 0.001 
 G 0.458* 0.210 0.389* 0.151 
 B 0.388 0.151 0.356 0.126 
 NRBDI 0.425* 0.181 0.417* 0.174 
 NGRDI 0.841* 0.708 0.722* 0.522 
 Cover 0.566* 0.320 0.480* 0.231 
 Line density 0.605* 0.366 0.495* 0.245 
 Line area 0.475* 0.225 0.380 0.144 
 Line height 0.422* 0.178 0.337 0.113 
 Line width 0.416* 0.173 0.350 0.123 
HSV H 0.664* 0.441 0.587* 0.345 
 S 0.242 0.059 0.174 0.030 
 V 0.289 0.083 0.247 0.061 
L*a*b* L* 0.262 0.069 0.225 0.050 
 a* 0.265 0.070 0.234 0.055 
 b* 0.261 0.068 0.225 0.051 

 

Conclusion 
Trials were conducted to identify the potential for machine vision to indicate biomass and plant N 
status for wheat and barley at GS31. From linear regression analysis across three sites, the machine 
vision parameter best correlated with biomass and plant N uptake was a colour index incorporating 
greenness and redness in the RGB colour space (NGRDI). This suggests that machine vision can 
complement other sensors for estimating biomass and plant N status and further work will be 
conducted to implement a multivariate modelling approach assessing biomass and plant N status for N 
decision making. 
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