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Background



Background

Wetland rice production and global budget
of GHGs



A. Subsector

GHG from
wetland rice

Enteric
fermentation
(methane)

32%

Biomass burning
(methane and
nitrous oxide)

Fertilizer o Ctiﬂn CO5, N3O 7%

Irrigation CO, 6%

GHGs from agriculture counting direct agricultural emissions plus input
production and energy use

Adapted from Bellarby et al. 2008
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Novel technologies to cope with the paucity of
labour and water
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A novel solution — Non-puddled transplanting of rice



Development

Non-puddled transplanti




Objectives:

4 To assess the contributions of N,O to life cycle GHG emissions for
CT and NP with crop residue retention levels

To determine the hotspots contributing significantly to the GHG

emissions within the system boundaries by a LCA study

16-Jan-17
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» Study site: Alipur, Rajshahi
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Methods

Closed Chamber method

Closed chamber for microbial respiration

Chamber - (30 cm length x 30 cm width x 60 cm height)

Chamber base - 31 cm length x 31 cm width x 7 cm N
Chamber groove - 1 cm x 2.5 cm (width x deep) Ay g

Closed gas chambers for CH, and N,O
60 cm length x 30 cm width x 100 cm height
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SLCA for field paddy production

» goal and scope definition

» inventory analysis
» impact assessment and

» interpretation.



Greenhouse gas emissions calculated for the
following practices:

% Conventional puddled transplanting with low residue
retention (CTLR)

%M Conventional puddled transplanting with high residue
retention (CTHR)

B Non-puddle transplanting with low residue retention
(NPLR)

B Non-puddle transplanting with high residue retention
(NPHR)



Life cycle inventory

Pre—farm emissions On-farm emissions
Chemicals v’ Farm machinery
v’ Soil
v’ Fertiliser
v’ Pesticides
v’ Herbicides

Farm machinery

v Plough/PT/VMP
v" Harvester

Transport

v Trucks

v Shipping Ref: Alam et al. 2016; Journal of Cleaner

Production 112(5): 3977-3987



Impact assessment

Global warming potential (GWP)

Greenhouse Time horizon
gas 20 years 100 years | 500 years
Carbon
dioxide 1 1 1
Methane 72 25 7.6
Nitrous
oxide 289 298 153

Source: IPCC, 2013



Results



Pre-farm emission (kg CO2eq/tonne

160
140
120
100

60
40
20

CTLR

2a. Pre-farm

o 7-11% of total LCA emission.

o Lower than any other paddy LCA
in the world.

Causes:

o Lower level of input used

o Use of natural gas as a feed stock

o Light vehicles used

CTHR NPLR

Rice cultivation practices

Legend:

CT = Conventional puddled transplanting
NP = Non-puddle transplanting

HR = High residue retention (NPTHR)
LR= Low residue retention (NPTLR)



On-farm emission (kg CO2eq/tonne rice)
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CTLR (1200 years time horizon)

N20
emission Farm
from machinery

use Production
of inputs
7%

paddock

(CO2 eq) 15%

3.5%
Transportati
ons of inputs
CH4 3%
emission
from CO2
paddock emission
(CO2eq) from
62.5% paddock

9%



CTHR (100 years time horizon)
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NPLR (100 years time horizon)
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NPHR (100 years time horizon)
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CHg4 (CO2-eq)




N20 (CO2-eq) emission
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Conclusions



Conclusions

> The CTHR emitted about 1.4 times more GHG emissions for one
tonne rice than NPLR.
» Applying NPLR in the wetland rice system of the EGP can reduce

GHG emissions to 1.1 tonne CO,—eq tonne™! rice production.

» The on—farm stage contributed the highest portion of the total GHG

emissions.

» CH,was the predominant GHG from 1 tonne of rice production.
» N,O emission contributing only 2-3.5 % of the total LCA GHG.

> We recommend additional SLCA studies for all the crops of the

cropping system.
Ref: Alam et al. 2016; Journal of Cleaner Production
112(5): 3977-3987
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