7th International Nitrogen Initiative Conference (INI 2016) 4-8 DECEMBER 2016 MELBOURNE CRICKET GROUND I VICTORIA I AUSTRALIA 'SOLUTIONS TO IMPROVE NITROGEN USE EFFICIENCY FOR THE WORLD'

GHG emission and Nr release from staple food production in China and their mitigation potentials Longlong Xia^{1,2}, Deli Chen² Shu Kee Lam², Xiaoyuan Yan^{1*} ¹Institute of Soil Science, CAS ²The University of Melbourne

MELBOURNE

GHG and Nr release

Field cultivation

Life cycle assessment (LCA)

CF and NrF

Questions

1.How much of the mitigation

potential?

2. How to realize the mitigation

Methodology (LCA)

Carbon footprint (kg CO₂ eq kg⁻¹ grain) = ($\sum_{i=1}^{m} AI_{i_{CO_2}} + \sum_{j=1}^{n} FC_{j_{CO_2}} + \sum_{g=1}^{k} FP_{g_{CO_2}}$)/yield

Nr footprint (g N kg⁻¹ grain) =
$$\left(\sum_{i=1}^{m} AI_{i_{Nr}} + \sum_{j=1}^{n} FC_{j_{Nr}} + \sum_{g=1}^{k} FP_{g_{Nr}}\right) / yield$$

System boundary: Al production to food product being distributed to markets

AI: Agricultural inputs (fertilizers, pesticide...) FC: Field cultivation (fertilization, irrigation) FP: Food production and distribution

GHG emission : CH₄, N₂O, CO₂, SOC change

Nr loss : NH₃, N₂O, NO_X, N leaching and runoff

Data compiling: statistical data, empirical model, IPCC emission factors....

Distribution of footprints

Relationship between footprints

Components of footprints

Mitigation potentials

How to realize?

Knowledge-based N practices

- Enhanced efficiency N fertilizers
 Controlled release N fertilizer (source)
 Nitrification inhibitor (source)
 Urease inhibitor (source)
- Optimized N application
 Reducing basal fertilizer N ratio (time)

Increasing N splitting frequency (time) Applying N deep placement (place)

Reducing N rate based on soil N test (rate)

Meta-analysis

Xia et al., 2016, Global Change Biology

- Crop productivity Grain yield Plant N uptake Grain NUE
- Various Nr loss NH₃ emission N₂O emission N leaching N runoff
- Economic indicators
 Input cost
 Yield profit
 Net economic profit

Effects on crop productivity

Effects on crop productivity

Optimizing N application methods

Increasing N splits Reducing BF ratio N deep placement

Effects on crop productivity

Achieved on a national average N reduction of 28%

Effects on Nr loss

Effects on Nr loss

Optimizing N application methods

Effects on Nr loss

Reducing N application rate based on soil N test

Cost-benefit analysis

Knowledge-based N practices	Input cost ^a ,%		Yield profit ^b ,%		Net economic profit ^c ,%	
	mean	95% CI	mean	95% CI	mean	95% CI
CRF application	6.38	4.93-7.84	7.67	6.51-8.76	7.78	6.31-9.23
NI application	9.78	8.07-11.51	10.02	I 8.23-12.05	12.64	I 8.96-17.1
UI application	7.05	5.53-8.73	7.09	5.47-8.90	5.85	2.15-9.27
Increasing N splits	21.42	20.14-22.80	5.83	4.85-6.81	3.58	2.39-4.74
Reducing BF ratio	No change	No change	4.06	2.74-5.42	5.03	3.49-6.73
Applying N deep placement	8.21	7.51-8.97	6.64	4 .67-8.91	6.11	3.81-8.57
Reducing N rate based on N test	-3.2	-(4.6–1.9)	1.25	0.25-2.31	2.86	I 1.44-4.46

^a**Input cost** included the cost of agricultural materials (fertilizers, NI and UI), and labor cost associated with fertilizer application and conducting N management practices (e.g., increasing splitting frequency, deep placement and soil N test).

^b**Yield profit** was the gross economic profit obtained from crop grains.

°Net economic profit calculated by subtracting the input cost from the yield profit.

Overall effects of N practices

Barriers

- Effects of these N practices varied among different crop species and soil properties.
- Many farms are still small scale, farmers' knowledge, environmental awareness still need to improve
- Farmers are risk-sensitive, and opportunity cost (time, labor, training/education costs) for implementing these N practices is very high.
- Fertilization mechanization.

Conclusions

- Large mitigation potentials exist for staple food production in China, 12-31% for GHG emission and 37-43% for Nr loss.
- Knowledge-based N practices can facilitate the realization of these potentials, with more grains, lower Nr pollution and higher economic return.
- Barriers still exist.

Thank you for your attention Ilxia@issas.ac.cn