

Nitrogen dynamics in deep ploughed soils of North Germany

Rolf Nieder¹, Zaur Jumshudov², Viridiana Alcántara³, Axel Don³, Reinhard Well³

¹Institute of Geoecology, Technische Universität Braunschweig, Germany ²WRRL-Beratung, Griesheim, Germany

³Thünen Institute of climate smart agriculture, Braunschweig, Germany

Contents

- Background
- Methods
- Results
- Conclusions

Plow
Mo-Till

Background

- Conservation tillage may slightly increase soil organic carbon (SOC) and total nitrogen stocks, particularly in the upper part of the former Ap

(SIX et al., 1999; STOCKFISCH et al., 1999; WANDER & BIDART, 2000; CARTER, 2005; NIEDER & BENBI, 2008; KAISER et al., 2014)

- Long-term SOC and total N accumulation after deepening of plough layers (Nieder & Richter 1986, 1991 & 2000; Nieder & Benbi, 2008)

N accumulation after deepening the tillage from <25 to >35 cm in Germany (NIEDER & BENBI, 2008)

Background

- Soil organic matter (SOM) burial causes long-term conservation of SOC and Ntot (Van Oost et al. 2012; HOFFMANN et al. 2013; JOHNSON 2014; CHAOPRICHA & MARÍN-SPIOTTA 2014)

- Effect of deep ploughing (>60 cm) on C and N dynamics?

Background

Reasons for deep ploughing

Since the late 19th century until the 1960s

- Peat cultivation
- Enlarging the rooting zone of mineral soils
- Improving soil structure in loess-derived Luvisols
- Breaking hardpans of sandy Podzols (B horizons)
- Melioration of Stagnosols

Less common since the 1970s

Current uses (only small areas)

- Breaking through of ploughing-induced hardpans
- Site preparation for afforestation

Background

Deep ploughing

- Drastic tillage operation
- Performed only once
- A number of field trials in Germany in the 1960s and the 1970s

DFG

Main characteristics:

- Dilution of SOC and Nt in the new Ap horizon
- Slanted Ap and B horizon stripes in the subsoil

Objectives of this study

- Investigate the N stock changes since the deep ploughing operation in the soil profile

THÜNEN

- Study net N mineralization potential of buried Ap material vs. surface Ap horizons
- Quantify nitrification potential of buried Ap material vs. surface Ap horizons

Sampling locations

Years of sampling: 2013/14 Total number of sites: 10 5 sites with sandy soils 5 sites with loess soils

DFG

7th International Nitrogen Initiative Conference (INI2016), 4-8 December 2016

THÜNEN

Soil sampling: 35 randomly distributed soil cores down to 100 cm depth and from 2 pits down to 150 cm depth

Site description and soil characteristics

Location	Short form	Parent material	Soil unit*	Texture	pH** (CaCl ₂)	Total N** (%)	Deep ploughing depth in cm (year)
Ahlhorn	AH	Pleistocene sand	Spodic Cambisol	Sand	5.6	0.16	90 (1968)
Banteln	BT	Loess	Haplic Luvisol	Silty loam	6.5	0.12	85 (1965)
Drüber	DB	33	,, ,, ,,	"""	6.8	0.12	87 (1966)
Essemühle	EM	Pleistocene sand	Dystric Cambisol	Sand	4.6	0.09	75 (1968)
Eickenrode	ER	3 3 3 3	Gleyic Cambisol	"	5.8	0.13	65 (1968)
Elze	EZ	3 3 3 3	Dystric Cambisol	"	5.4	0.09	55 (1968)
Hemmelsberg	HB	3 3 3 3	Haplic Podzol	"	5.4	0.18	80 (1978)
Halchter	HT	Loess	Haplic Luvisol	Silty loam	6.3	0.10	70 (1966)
Salzgitter	SZ	33	33 33	"""	6.8	0.15	90 (1966)
Warberg	WB	33	Stagnic Luvisol	""	5.6	0.09	65 (1966)

*According to WRB (IUSS Working Group, 2007); **pH and total N in Ap horizons of the reference soils

- Deep ploughing in experimental fields was carried out about 35-50 years before sampling
- Deep ploughing depth ranged between 55 and 90 cm

Soil analyses

Soil pH: In 0.01 M CaCl₂ using a glass electrode

Soil texture: Sedimentation method

Total C and N: Elemental analyser via dry combustion

Soil bulk density: Undisturbed samples were dried at 105°C to constant mass and weighed

Incubation experiment on nitrogen mineralization (35°)

(Stanford & Smith 1972, Nordmeyer & Richter 1985)

day 1, 3, 7..... 177

Experiment on nitrification (25°) following ammonium fertilizer application (100 µg NH4+-N g⁻¹ soil);

Results

N stock changes after 45 years (mean of 10 sampling sites) in deep ploughed vs. reference soils

- Deep ploughing resulted in a mean N accumulation (0-100 cm) of 1.8±0.4 Mg ha⁻¹ (mean increase by 23%)
- This is equal to a mean N accumulation of 41 kg N ha⁻¹ year⁻¹
- Only two locations (HB and DB) showed slightly negative N balances

Results

Courses of N mineralization in soil samples from Banteln (Haplic Luvisol) and Hemmelsberg (Haplic Podzol) Measured and estimated (according to a first-order single exponential model) values are given with dots and curves, resp.

- R1: Ap of reference soil
- D1: Ap of deep ploughed soil
- D2 and D3: upper and lower part of the buried Ap

Cumulative N mineralization (in kg ha⁻¹) until day 177

Site	R1	D1	D2	D3
Banteln	356.0	376.8	16.9	16.6
Hemmelsberg	250.5	97.3	2.5	14.3

Results

Results from the nitrification experiment with fertilization of the sampling site Hemmelsberg

- R1: Ap of reference soil
- D1: Ap of deep ploughed soil
- D2+D3: Mixture of upper and lower parts of the buried Ap

Conclusions

- Deep ploughing may offer a significant potential for long-term N (and C) accumulation through
 - burial of high amounts of SOM associated with long-term N (and C) preservation
 - N (and C) immobilization in newly formed SOM in the new Ap horizon
- The expected SOM equilibrium may be attained over a period longer than 4-5 decades
- Extremely low N mineralization potentials and nitrification capacities in the buried Ap material may be drawn back to
 - less available C as energy source
 - lower microbial biomass and activity
 - N immobilization in stable SOM fractions

For more information see Poster 25

Thank you!

SOC stocks (100 cm depth) of deep ploughed soils vs reference plots. Sites have been deep ploughed 35-50 years ago to a maximum depth of 90 cm (Alcántara et al., 2016)