

Sheep grazing on crop residues increase soil mineral N and grain N uptake in subsequent wheat crops James Hunt

Senior Lecturer School of Life Sciences / Dept. of Animal, Plant & Soil Sci. 7 December 2016

CRICOS Provider 00115M

Acknowledgements

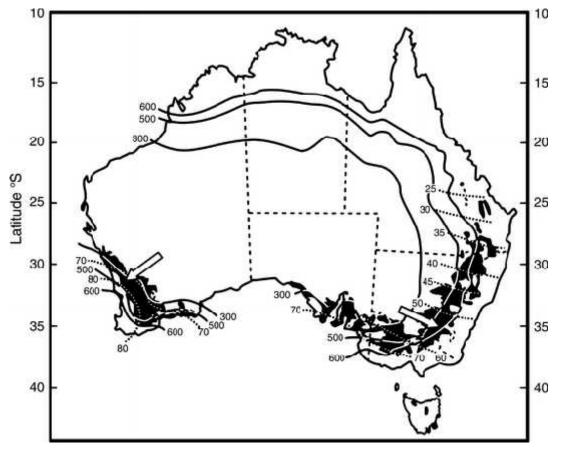
Funding

GRDC Water-use Efficiency Initiative

GRDC Stubble Initiative

Host farmers

Peter, Lynne & Jason Coleman


Co-authors

- **CSIRO** Tony Swan, John Kirkegaard, Laura Goward, Brad Rheinheimer, Mark Peoples
- **FarmLink** Tony Pratt, Kellie Jones, Paul Breust
- Steering committee Jason Coleman, Greg Condon, ChrisDuff, Derek Ingold, James Ingrey, Geoff Lane, John Pattison, Jamie Pursehouse, Michael Sinclair, Rob Taylor, Craig Warren

Grain Production in Australia

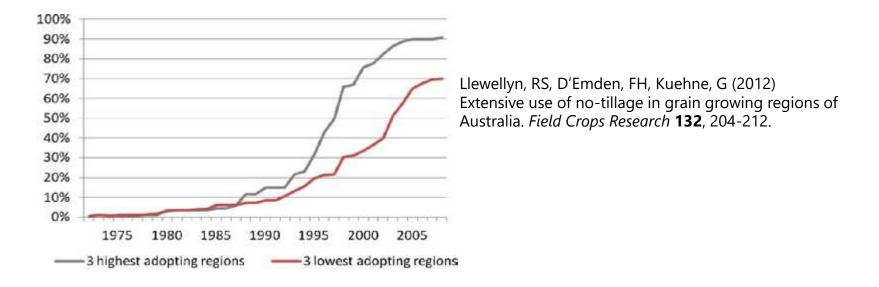
- Production (2014)
 - Wheat 24 Mt
 - Barley 8 Mt
 - Canola 4 Mt
 - Pulses (chickpeas, lupins, lentils, field pea, faba bean) 1 Mt
- Southern Australia
 - All crops grown during winter,
 - Land left fallow over summer

Australian grain production

Kirkegaard et al., (2011) In: Rainfed Farming Systems (Springer) pp 715-754

Southern Australian mixed farming systems

- Many Australian grain farms are 'mixed' farms
 - Livestock enterprise (sheep)
 - Crop enterprise (wheat-based)
- Mixed farms are synergistic (pasture-crop N dynamics & business risk)



Adoption of conservation agriculture (no-till) and controlled traffic farming (CTF)

Conservation agriculture founded on three principals (FAO);

- Direct planting of crop seeds without tillage
- Maintenance of permanent soil cover especially by crop residues and cover crops
- Crop diversity

Will the benefits of no-till and controlled traffic farming systems be fully realised while sheep are grazing paddocks?

- Removing cover
- Compacting soil

"Collective Inquiry" CSIRO Farmer Consultant Consultant Farmlink Farmer Farmlink Farmer Farmer CSIRO

Treatments & experimental design

- Grazing
 - Nil graze
 - Stubble graze
- Stubble retention
 - Burn
 - Retain
- Factorial randomised complete-block design in two phases

Phase	2008	2009	2010	2011	2012	2013	2014	2015
Phase 1	Lucerne	Wheat	Canola	Wheat	Wheat	Canola	Wheat	Wheat
Phase 2	Lucerne	Lucerne	Wheat	Canola	Wheat	Wheat	Canola	Wheat

Seasonal pattern & application of treatments

La Trobe University

farming systems

Field Crops Research 196 (2016) 22-32

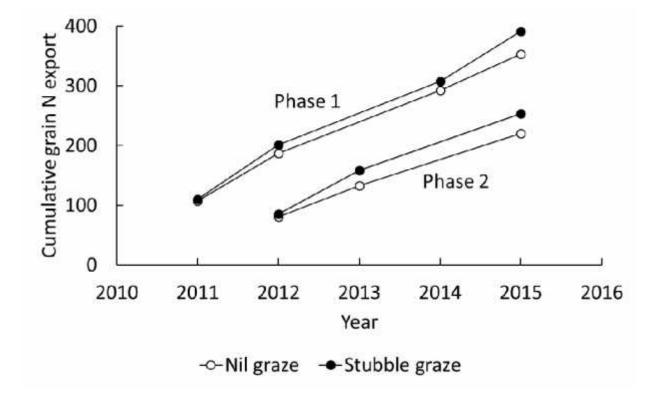
Sheep grazing on crop residues do not reduce crop yields in no-till, controlled traffic farming systems in an equi-seasonal rainfall environment

James R. Hunt^{a,+,1}, Antony D. Swan^a, Neil A. Fettell^b, Paul D. Breust^{c,2}, Ian D. Menz^d, Mark B. Peoples^a, John A. Kirkegaard^a

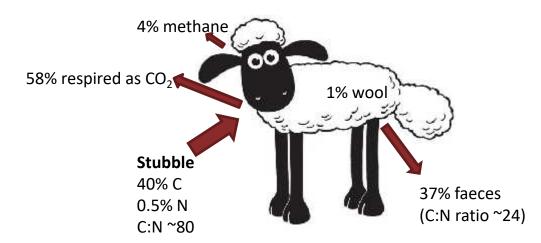
⁴ CSIRO Agriculture and Food, PO Box 1700, Canberra, ACT 2601, Australia
⁹ University of New England & Central West Varming, Systems, PO Box 171, Candobolia, NSW 2877, Australia
⁶ FarmLink Research, PO Box 240, Junee, NSW 2003, Australia
⁴ Department of Primary Industries NSW, Condobolin Agricultural Research & Advisory Station, PO Box 300, Condobolin, NSW 2877, Australia

- No negative effect of grazing on soil water balance provided 70% stubble cover maintained
- No negative effect of grazing on crop yield

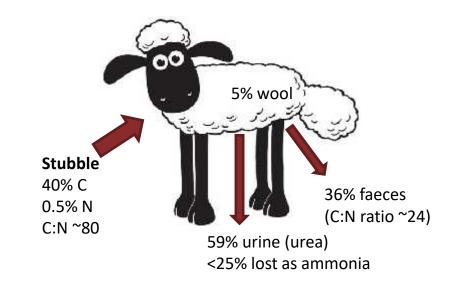
Main effect of grazing = 102 to 121 kg/ha mineral N


|--|

Phase year	Nil graze	Stubble graze
Phase 1 2011	79	107
Phase 1 2012	99	127
Phase 1 2014	132	121
Phase 1 2015	90	145
Phase 2 2012	73	81
Phase 2 2013	93	94
Phase 2 2015	145	170
P-value	0	.018
LSD (P=0.05)		26

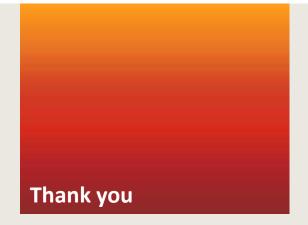

Wheat grain N uptake (kg/ha) (main effect 85 to 92 kg/ha N)

		Stubble management		
Phase year	Graze treatment	Stubble burn	Stubble retain	
Phase 1 2011	Nil	107	108	
	Stubble	111	110	
Phase 1 2012	Nil	92	79	
	Stubble	89	92	
Phase 1 2014	Nil	99	112	
	Stubble	109	106	
Phase 1 2015	Nil	63	61	
	Stubble	77	84	
Phase 2 2012	Nil	88	81	
	Stubble	86	86	
Phase 2 2013	Nil	77	51	
	Stubble	~ 79	73-	
Phase 2 2015	Nil	81	88	
	Stubble	-92	94	
P-value		<0.001		
LSD (p=0.05)		8		


Cumulative grain N uptake in Stubble Retain treatments

What happens to C in stubble when sheep eat it (assuming no weight gain)?

What happens to N in stubble when sheep eat it (assuming no weight gain)?



C & N dynamics when stubble grazed

	Stubble retained	Stubble grazed
Post harvest stubble mass	7 t/ha	7 t/ha
Amount of stubble consumed	-	3 t/ha
Amount of stubble remaining	7 t/ha	4 t/ha
N mass in stubble remaining	35 kg/ha	20 kg/ha
N mass in urine	0 kg/ha	9 kg/ha
N mass in faeces	-	5 kg/ha
C mass in stubble remaining	2.8 t/ha	1.6 t/ha
C mass in faeces	-	0.4 t/ha
Immobilising power of C	112 kg/ha N	64 kg/ha

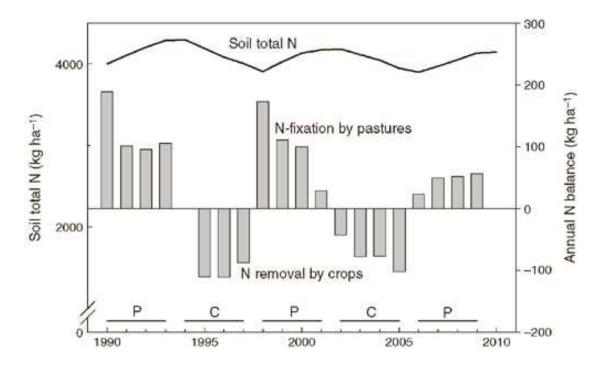
Conclusions

- Grazing stubble makes more N available to wheat crops
 - Soil mineral N prior to sowing
 - Grain N uptake
- Dominant mechanism is likely reduced immobilisation rather than faster cycling
- Stubble grazing increases rate of N mining...
- ...but mixed farming systems have pasture leys!
- Can we train termites to do the same thing in crop-only systems?

James Hunt

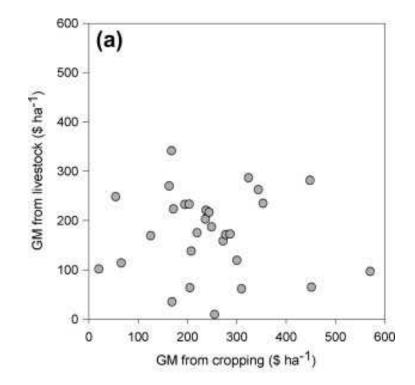
E:j.hunt@Latrobe.edu.au

P: 03 9032 7425


M: 0428 636 391

T: @agronomeiste

latrobe.edu.au


CRICOS Provider 00115M

Benefits of mixed farms – N for crops from legume based pastures

Angus, JF, Peoples, MB (2012) Nitrogen from Australian dryland pastures. Crop and Pasture Science 63, 746-758.

Benefits of mixed farms – Financial Risk Mitigation

Bell, LW, Moore, AD (2012) Integrated crop-livestock systems in Australian agriculture: Trends, drivers and implications. *Agricultural Systems* **111**, 1-12.