

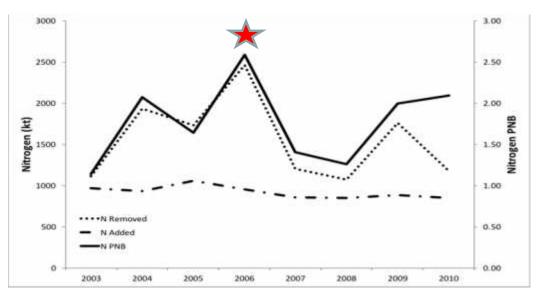
Nitrogen performance indicators on southern Australian grain farms

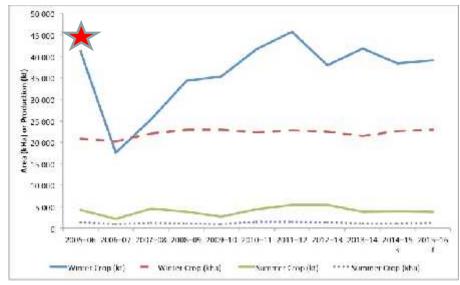
Rob Norton,

IPNI, Australia and New Zealand

Elaina vanderMark

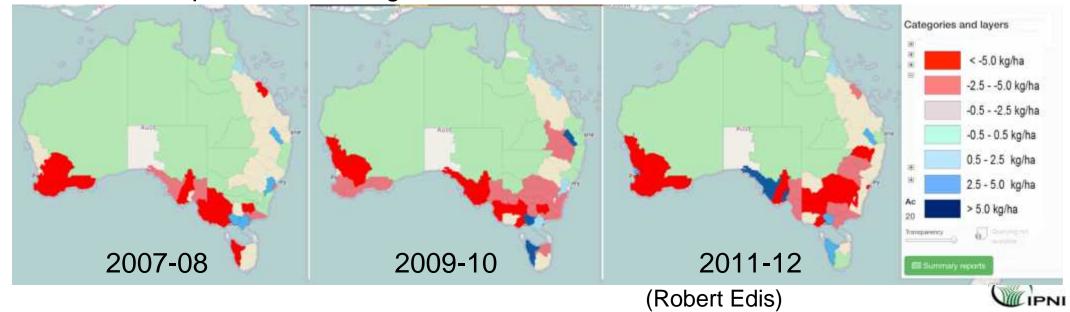
Southern Farming Systems

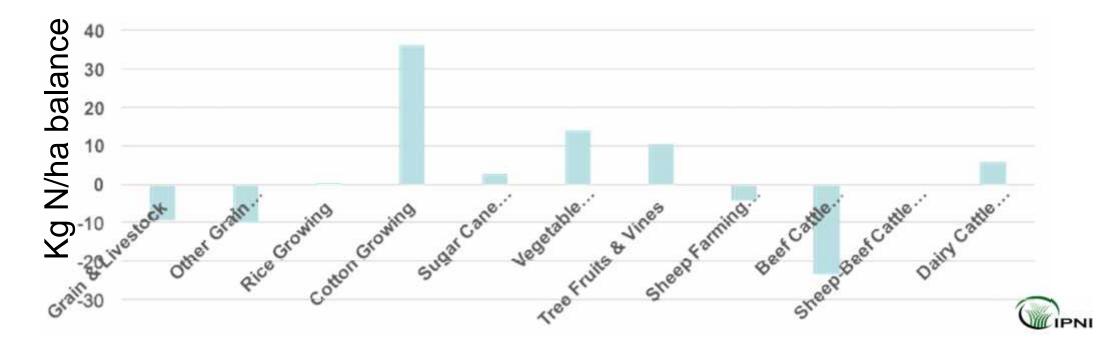

International Nitrogen Conference, Wednesday 07 December, Session 4A, 1615e.



National N Accounts

- 2002-2010
 - N use from Fertilizer Australia
 - N removal
 - ABARE production stats
 - ANRA nutrient densities
- Variation in PNB due to swings in production with a relatively constant N fertilizer use
- Since 2010
 - N use has increased 50%
 - grain alone increased 30%

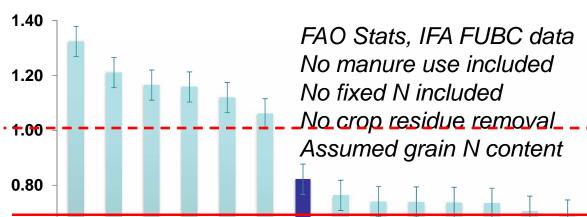



National N balances - http://www.ozdsm.com.au/ozdsm_map.php

- Removal of N in farm products ABARE farm statistics/ANRA Nutrient Density
- Addition of N as fertilizer Fertilizer Australia
 - No consideration of biological N fixation or recycled N (manures, etc).
- Based on areas fertilized by Natural Resource Management Zones
- Three audit periods average

Comparison of agricultural crops and NUE

- Production and fertilizer use data from ABS Farm Survey 2012
- Nutrient densities from ANRA Nutrient Density
- No estimate of fixed N or manure or recycled residues.
- Estimate a nutrient balance intensity kg N/ha surplus or deficit.


Cereal N PNB - kg N grain/kg N fertilizer

0.60

0.40

0.20

0.00

Crop	PNB
Wheat	0.74
Rice	0.56
Corn	0.55
Other	1.23

Region	PFP - N
Australia	52
Canada	45
World	43

Most crops are grown in rotations – so is benchmarking by product useful?

Russia ina oco landine Brazili Africa han Je F. 121 esia ada les non le T. 1. Han Chile hina yeia gypt india

Norton, Davidson & Roberts, 2015

Deriving performance metrics (eg PNB, PFP, NBI)

- What is the purpose of deriving the metrics
- None of these per se provide environmental or economic insights
 - Statements of accountability for regions/industries?
 - Market access and/or production system certification?
 - Provide information to farmers so they can improve their nutrient management?
- Can they be derived?
 - Numerator Y/F or (Y-Y0) Denominator F or (F+S)

Deriving performance metrics (eg PNB, PFP, NBI)

- Have good quality data on which to estimate the metrics.
 - Regional and industry specific values system (not crop).
 - Production data is usually of good quality
 - Regional & crop specific fertilizer application rates difficult to find.
 - -Regional & crop specific product nutrient concentrations.
 - e.g Canola in South Australia UEP 36 kg N/t cf MNSA 49 kg N/t
 - Include non-fertilizer nutrient inputs & removals
 - Manures, fixed N, cover crops, crop residue management, water/air.

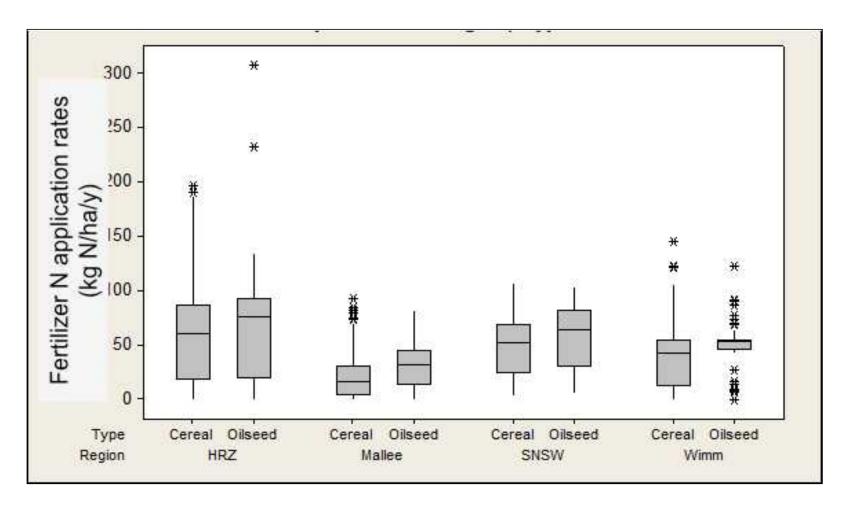
Н

A

Т

?

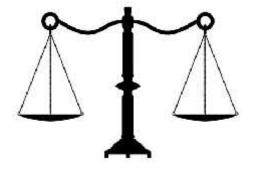
- Collected farm/paddock level nutrient input and removal from farmers and consultants
 - 3-5 years of paddock records, 2555 paddock/years
 - Crops, yields, protein, hay, stubble management


Region	Growers	Paddocks	Area (ha)
HRZ	45	145	7,600
Mallee	23	184	17,800
SNSW	33	63	5,300
Wimmera	17	82	4,200
Tasmania	4	15	320
UEP	6	18	2,100

Crop	%Pdk
Wheat	37%
Barley	21%
Canola	20%
Pulse	11%
Pasture	6%
Fallow	2%

 Some earlier data surveying actual wheat and canola regional nutrient densities. Large regional and annual variability.

Nutrient use by region & crop

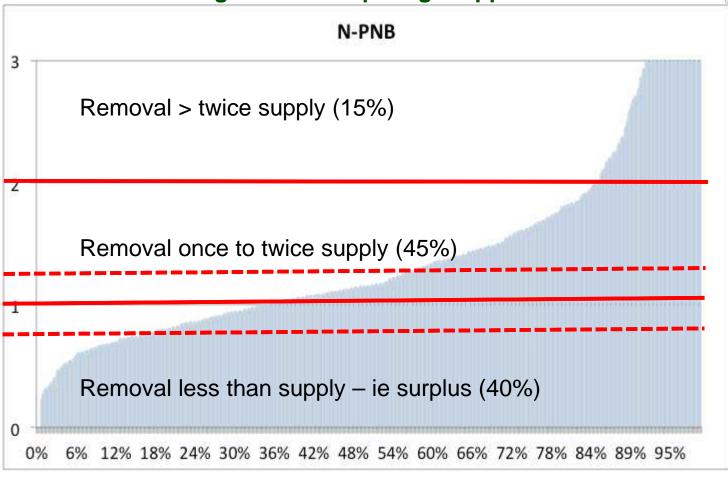


Developing nutrient balances

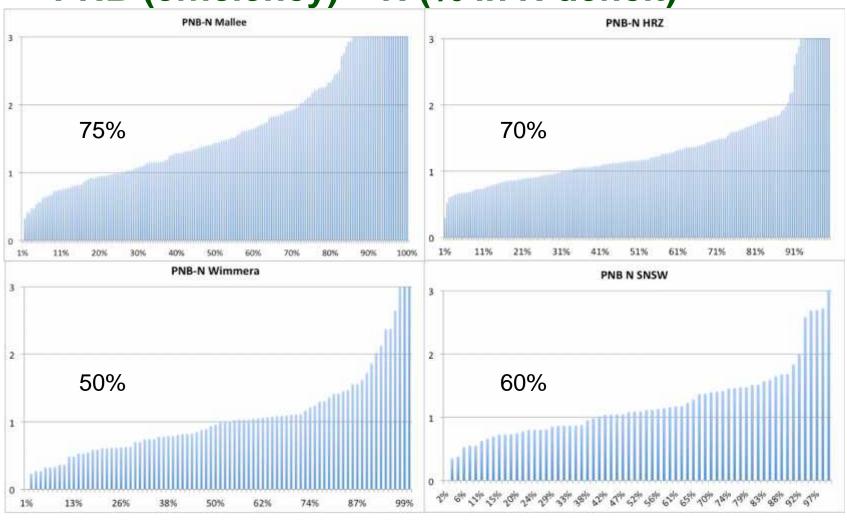
- Removal of nutrients
 - Grain
 - Burned stubbles (Y/HI* loss N (80%), P (44%), K (40%), S (80%)
 - Grazing N (50%), P, K, S (0)
- Inputs of nutrients
 - Fertilizers
 - Fixed N derived from grain yield
 - Shoot N%, %Ndfa,
 Shoot N:Root N and HI
 - Used a gross value
 - Deduct removal in grain/hay
 Net range 7-65 kg N/t grain

 - Pastures cereal*2*40

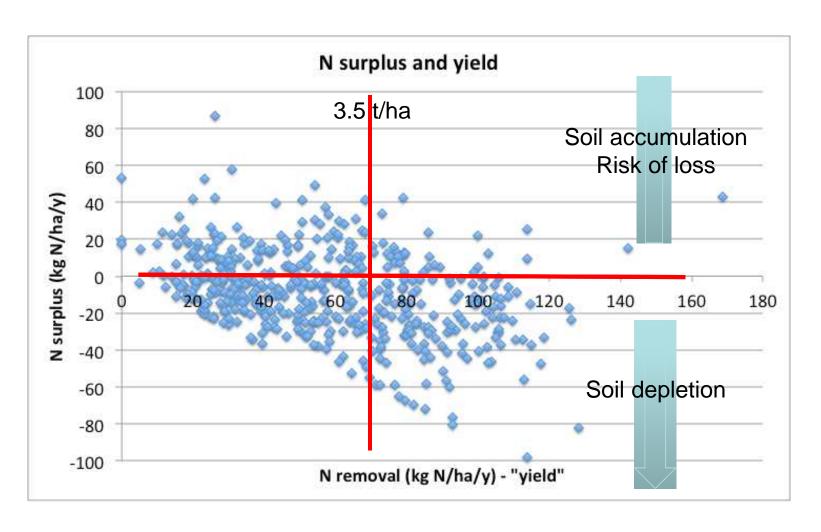
g N/hz yield	250 -	•					• Ler		eaf lup	uin.	
rtion (k f grain	150	+					* Ve		rear ru	enoe:	
Net N contribution (kg N/ha) per tonne of grain yield	100 -		×								
Net N per	50 -		+	5							
	0 -			t	#	8	8	8		2	-0
	-50 -)	0.2		0.4		0.6 ndex	D +	0!8	P	1


Region	% BNF
HRZ	16
Mallee	29
SNSW	
Wimmera	50

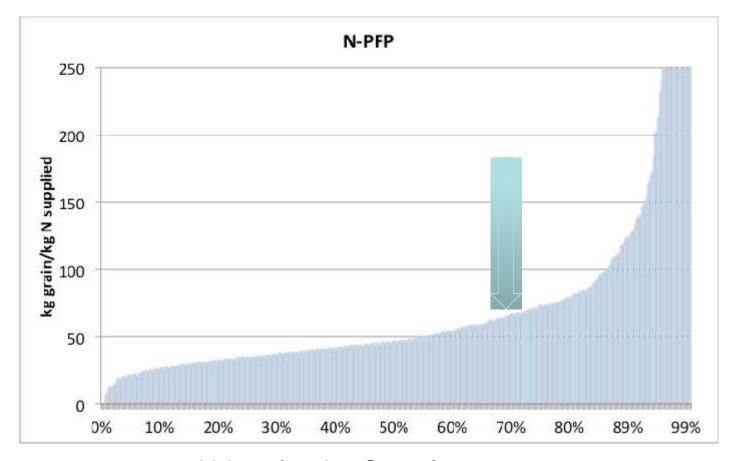
Shu-Kee Lam


PNB (efficiency) – N – all data

mean 1.14 kg N removed per kg N applied



PNB (efficiency) – N (% in N deficit)


PNB "Correcting" for yield -

PFP (effectiveness) – N – all regions

mean 77 kg grain per kg N

Value of grain: Cost of urea

So what to make of this?

- Many grain producers are in N deficit
- Few growers are in N surplus
- Can develop nutrient efficiency and effectiveness regional values (need to refine both) – with ranges
- The farming system *not the product* is the unit, so farmers need to be engaged.
- Link to soil "health", environmental indicators.
- Link to economic indicators.
- Communicate and explain what these numbers mean to growers & advisors.
- Multiple indicators are needed

Regions	Average of PNB-N	Average of PFP-N
HRZ	1.55	71
Mallee	2.09	105
SNSW	1.20	50
Wimmera	1.24	47
South East	1.66	77

PotashCorp

LUXI

The Mosalo

Company

Affiliate Members

🎻 Fertilizer Institute

The Fertilizer

Institute (TFI)

Thanks for your attention...

http://www.ipni.net http://anz.ipni.net

