Economic Development, Jobs, Transport and Resources

Sensing Technology for Measuring Crop Nitrogen

Glenn Fitzgerald and Eileen Perry

Sensors for N detection

Sensor types

- Multispectral: discrete, non-contiguous
- Hyperspectral: narrow, contiguous
- Fluorescence: discrete illumination and measurement

Considerations

- Active and Passive
- Point, transect and imagers
- Spatial scale ('grain' size)
- Proximal vs remote
- Measurement/revisit frequency
- Platforms
- Calibration

Ghozlen et al 2010

Platforms

Field based (handheld, tractor)

Satellite/light aircraft

Unmanned Aerial Vehicle (UAV)

Calibration and validation

Considerations

• Quantification vs relative measures

 $R_{550} = DN^*3.37 \ 10^{-4} + DN^{2*}2.73 \ 10^{-7}$

'Best' wavelengths for quantifying N

Match physiology with sensor spectrum

Red edge indices

 $\begin{aligned} \textbf{MCARI} &= [(\textbf{R}_{700} - \textbf{R}_{670}) - 0.2^*(\textbf{R}_{700} - \textbf{R}_{550})^*(\textbf{R}_{700} / \textbf{R}_{670}), \text{ (Daughtry et al., 2000)} \\ \textbf{REP: } \lambda_{rep} &= \lambda_{700} + (\lambda_{740} - \lambda_{700})^*[(((\textbf{R}_{670} + \textbf{R}_{780}) / 2) - \textbf{R}_{700}) / (\textbf{R}_{740} - \textbf{R}_{700})], \text{ (Guyot and Baret, 1988)} \\ \textbf{MTCI} &= (\textbf{R}_{754} - \textbf{R}_{705}) / (\textbf{R}_{705} - \textbf{R}_{681}), \text{ (Dash & Curran, 2006)} \\ \textbf{CCCI} &= (\textbf{NDRE} - 0.34^* \textbf{NDVI}) / (0.27^* \textbf{NDVI}), \\ \textbf{NDRE} &= (\textbf{R}_{790} - \textbf{R}_{720}) / (\textbf{R}_{790} + \textbf{R}_{720}) \\ \textbf{NDVI} &= (\textbf{R}_{790} - \textbf{R}_{670}) / (\textbf{R}_{790} + \textbf{R}_{670}), \text{ (Barnes et al., 2000)} \end{aligned}$

0.1

700

Wavelength (nm)

750

800

Mapping N with CCCI

• Satellite or Unmanned Aerial Vehicle (UAV)

Felderhof and Gillieson, 2011

a)

Perry et al., 2012

Fluorometer: Canopy N in wheat

Fluorescence

- Multiple indices
- NBI_G worked best

%N plant and 'NBI_G' fluorescence index at growth stage Zadoks 65 (heading) of wheat.

Future

Integration of sensors, platforms, wireless networks and modelling

- Thermal: Canopy temperature (water status)
- LiDAR: Canopy structure (biomass)
- UAV hyperspectral
- Microwave: (tree structure, soil water)
- Raman spectroscopy (chemical composition)

Acknowledgements

Grains Research & Development Corporation

Australian Government Department of Agriculture

Additional slides

Derivation of CCCI

Canopy cover

N and fluorometer

Variety and CO2

Reduction in %N due to elevated CO₂ across a range of wheat varieties at Z65 (heading), (p<005). NBI_G index measurement of leaves across the same varieties in Fig. 3 (p<005).