

Influence of soil fertility variability and nutrient source on maize productivity and nitrogen use efficiency on smallholder farms in Zimbabwe

Shamie Zingore

International Plant Nutrition Institute, Sub-Saharan Africa Program szingore@ipni.net

7th International Nitrogen Initiative, Melbourne, 7 December 2016

1) Introduction: Status of N use and maize yields

- Low maize productivity in SSA associated with low nutrient use (<15 kg N/ha)
- Yields of <2 t/ha are lowest globally</p>
- N recognized as the most limiting nutrient in maize production
- N balances are highly negative in maizebased systems
- High prevalence of degraded soils

Negative annual nitrogen balances

1) Introduction: Challenges of N use

- Sustainable maize production intensification depends of effective N management
- N use efficiency very low when farmers increase fertilizer use
- Multiple challenges for N management
 - Soil fertility variability
 - Multiple and complex constraints to crop production
 - Land degradation

Nitrogen deficiency accounts for 60-95% of maize yield gaps

Complex variability in smallholder farming systems

Giller, 2006

Can crop productivity increases be achieved while achieving high N use efficiencies?

4R Nutrient Stewardship

- Concept developed by the global fertilizer industry
- Balanced application of all 4Rs is required for effective nutrient use
- Provide a basis assessing best management practices of nutrients
- Simple and participatory approach based on concrete scientific principles
- Global principles, adaptable to local conditions

2) Study focus

4R assessment of maize production systems with a focus on nutrient interactions under variable soil fertility

Can crop productivity increases be achieved with high N use efficiencies in SSA?

- Assess effects of inherent and management induced soil variability on maize yields and nutrient use efficiencies.
- Evaluate the long-term effects of nutrient management strategies on maize yields and nutrient use efficiencies

3) Methodology: Study area and field sites

3) Methodology: Trial design and measurements

Treatments

- Control
- 100 kg N/ha
- 100 kg N/ha + PKSCaMgZnB
- 100 kg N/ha + 15 t manure
- * Applied for 10 seasons
- * Crop residues removed

Measurements

- Grain yield
- N partial factor productivity
 [kg grain / kg fertilizer Napplied]
- Soil properties

4) Results: Maize yield response

4) Results: N Partial Factor Productivity

5) Study highlights

- Maize yields and NUE in SSA strongly affected by soil fertility variability
- Targeted management of N, balanced nutrient application and organic resources required to optimize NUE
- Land degradation impose major challenges for intensification
- Effects of land degradation have long-term effects on yield and N use efficiency
- Integrated soil fertility management as part of a holistic 4R framework crucial for long-term sustainable intensification

Acknowledgements

- Ken Giller
- Leonard Rusinamhodzi
- Francis Dzvene

Thank you

www.ipni.net •
szingore@ipni.net