

FACULTY OF VETERINARY & AGRICULTURAL SCIENCES

Mitigation of nitrogen losses with Australian zeolites during the anaerobic digestion of swine manure

Thushari Wijesinghe, Dr. Kithsiri Dassanayake, Prof. Peter Scales, Prof. Deli Chen

Swine industry in Australia

- Around 1500 pig farmers produce 4.8 million pigs annually⁽¹⁾
- Waste management
 - Huge quantity of wastes (150 250 L / sow / day)
 - 83% of operators use anaerobic lagoons
- Emissions
 - 66% of GHG emissions from the pig sector are from uncovered lagoons
- Solutions
 - Government's programs and policies to promote methane capture, Ex: anaerobic digesters
 - No applicable solution to nitrogenous gas emissions

Bio-chemical process of AD

Zeolites

- Zeolites are hydrated alumino silicate minerals
- Highly micro porous crystalline structure

- Zeolites deposits exist in many parts of the world
- In Australia, Zeolite deposits are at Werris Creek, New South Wales, and Emerald, Queensland

MELBOURNE Physical and chemical properties

- Act as "molecular sieves"
 - Ability to trap ions, water and/or other molecules
 - Lose and gain molecules reversibly
 - High adsorption property & high ion selectivity of NH₄+
 - High ion-exchange property

Each different zeolite has its own characteristics

Main research objectives

- To determine the optimum zeolite dose that maximise ammonium recovery with enhanced methane production
- 2. To determine the impact of nitrogen removal on methane generation and anaerobic digestion process performance

Methodology

Experimental set-up

Experimental conditions

Digester Type	Zeolite addition rate		
	g of zeolite/L of slurry		
Swine Manure + Natural zeolite	0, 10, 40,70,100		
Swine Manure + Sodium zeolite	0, 10, 40,70,100		

Initial characteristics

Parameter	Swine manure	Inoculum
TS%	7 ± 0.15	3 ± 0.01
VS%	69 ± 0.32	67 ± 0.19
рН	6.73 ± 0.05	7.39 ± 0.01
sCOD (mg/L)	14725 ±214	1734 ±35
NH4-N (mg/L)	664 ±12	1298 ±9
N%	2.48 ± 0.02	2.97 ± 0.02
C%	33.54 ± 0.13	31.76 ± 0.16

AP5

AP5 mak

make the text larger Arjun Pandey, 28-Nov-16

Final ammonium concentration

Type of Zeolite	Reduced NH ₄ + % compared to the no zeolite digesters			
	10g/L	40g/L	70g/L	100g/L
Natural	5	20	37	50
Zeolite	±2.7	±4.4	±3.19	±2.18
Sodium	4	19	31	52
Zeolite	±0.75	±1.38	±1.11	±0.83

Final cation concentrations

Biogas and methane production

Biogas and methane production

Cumulative biogas production

Cumulative methane production

Methane & ammonium changes

	10 g/L		40g/L		70 g/L		100 g/L	
Type of Zeolite	Enhanced	Reduced	Enhanced	Reduced	Enhanced	Reduced	Enhanced	Reduced
	% of CH₄	% of NH ₄ +	% of CH ₄	% of NH₄⁺	% of CH ₄	% of NH ₄ +	% of CH ₄	% of NH ₄ +
Natural	15	5	29	20	13	37	10	50
Zeolite	±1.4	±4.7	±1.05	±4.4	±0.85	±3.19	±1.33	±2.18
Sodium	13	4	15	19	18	31	12	52
Zeolite	±1.21	±0.75	±0.18	±1.38	±0.89	±1.11	±0.16	±0.83

Methane enhancement and ammonium reduction % compared to no zeolite digesters

Conclusion

- Australian zeolites significantly enhance methane generation while adsorbing substantial quantity of ammonium from the medium during the anaerobic digestion process of swine manure
- The effects of natural and sodium zeolites are more or less similar during the anaerobic digestion of swine manure
- Although the higher doses of zeolite continue to reduce ammonium linearly, the increases in methane yield are marginal at doses above 40g/L

More information:

Journal of Environmental Science and Health, Part A

Toxic/Hazardous Substances and Environmental Engineering

ISSN: 1093-4529 (Print) 1532-4117 (Online) Journal homepage: http://www.tandfonline.com/loi/lesa20

Ammonium removal from high-strength aqueous solutions by Australian zeolite

D. Thushari N. Wijesinghe, Kithsiri B. Dassanayake, Sven G. Sommer, Guttila Y. Jayasinghe, Peter J. Scales & Deli Chen

Acknowledgement

- Dr. Kithsiri Dassanayake
- Prof. Deli Chen
- Prof. Peter Scales
- Dr. Helen Suter
- Prof. Frank Dunshea
- A/Prof. Graham Moore
- Soil science research group
- Technical staff
- Berrybank piggery
- Friends & family

Thank You

