Economic Development, Jobs, Transport and Resources

Benefits, costs and risks of nutrient use in cropping in the HRZ of southern Australia

K Stott, B Christy, P Riffkin, M McCaskill

Purpose

To equip growers and their advisors to confidently assess crop nutrient demands and pay-offs in the HRZ of southern Australia.

Overview

- Features of the problem
- Response surface analysis
 One nutrient at a time (N or P or S or K)
 Two nutrients at a time (N&P or N&S or N&K)
- Conclusions

Features of the problem

- Determine fertiliser rates and product yield that maximise net revenue (economic optimum) in the current growing season.
- Information is required at the local scale (soil type and climate).
- Growers able to fit the fertiliser to their budget.
- Assist growers to respond tactically within a season to evolving conditions.
- Risk encountered mostly relate to production outcomes:
 - Unknown season type or yield but known starting moisture
 - Fixed crop \$ returns (can contract)
 - Fixed fertiliser prices at application

One-nutrient-at-a-time approaches

Jobs, Transport and Resources

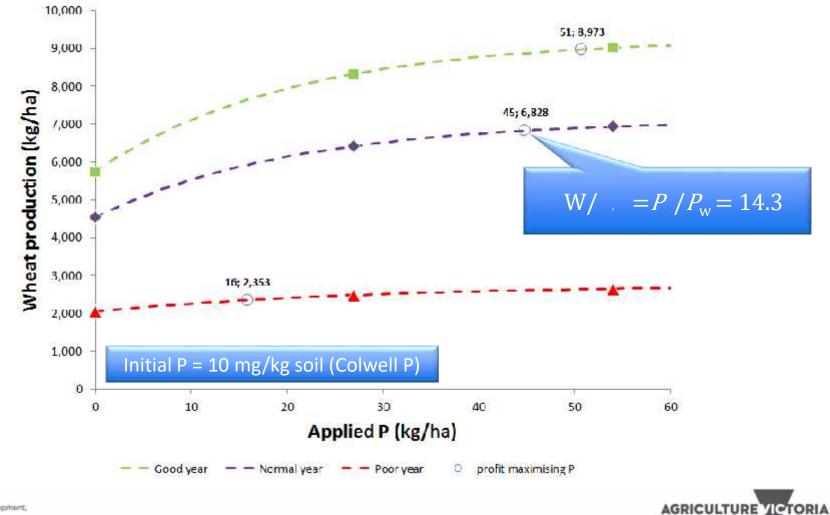
Optimisation – one variable input

- Method:
 - ✤ "Response surface analysis".
 - Integrates estimated response surfaces with the marginal principle of profit-maximisation.
- The decision rule for maximising profit from using a variable input, such as N or P, is to apply the input up to where the revenue from an extra kilogram of nutrient applied just exceeds its cost.
- Assumes that other nutrients are unlimiting.
- We uses conventional response curves for the current time period:
 - ✤ Not 'steady-state' or maintenance curves.
 - Will also provide information on residual nutrients at end of growing season.

Price assumptions

Wheat price (\$/t), net, on-farm post-harvest ¹	256
N inputs	
- Urea unit cost delivered and spread (2 applications) (\$/t) ^{2,1}	552
- N:W price ratio	4.8
 N unit cost delivered and spread (\$/kg N) 	1.20
P inputs	
 DAP unit cost delivered and spread (\$/t)^{2,1} 	722
 P unit cost delivered and spread (\$/kg P)³ 	3.61
- P:W price ratio	14.3
- P:N price ratio	3.0

Sources:


1. 2016 Farm Gross Margin Guide (GRDC, 2016)

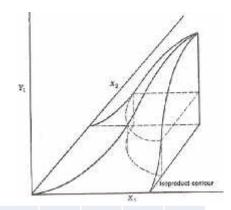
2. Bruce Lewis, Vickery Bros (pers. comm.)

3. Calculated from the DAP price, after accounting for the value of N as determined from the price of Urea.

Optimisation – one variable input

Two-nutrient-at-a-time approaches

Jobs, Transport and Resources


Optimisation - 2 variable inputs

- Relaxes the assumption that other nutrients are unlimiting.
- Takes into account the market as well as physical substitution between the two variable nutrients .
 For example, that P is 3 times more expensive than N.
- The economic decision rule is to apply N and P up to where the cost of applying an extra kilogram of P is equal to the reduction in the cost from using less of N.
- Accommodates a budget constraint:
 - Can determine the optimum yield and combination of 2 fertiliser inputs, say N and P
 - ✤ OR the least cost combination of the 2 fertiliser inputs.

Optimum yield and two variable inputs (N & P) in a "good" year

	160	5,411	8,026	8,386	8,605	8,763	8,888	8,992	9,080	9,157	9,226	9,288	9,344	9,396	9,444	9,488	9,530	9,569
	150	5,393	7,999	8,359	8,576	8 734	8,859	8,962	9,050	9,127	9,196	9,257	9,313	9,365	9,413	9,457	9,498	9,537
	140	5,374	7,971	8,329	8,546	8,104	8,828	8,930	9,018	9,095	9,163	9,225	9,281	9,332	9,379	9,424	9,465	9,504
	130	5,353	7,941	8,298	2 514	8,67.	8,794							-	9,344	9,388	9,429	9,468
	120	5,332	7,908	8,264	8,479	8,635	8,758			/ .	=P	P	= 3		9,306	9,350	9,391	9,429
	110	5,308	7,873	8,227	8,441	8,507	3 719							_	9,264	9,308	9,349	9,387
~	100	5,282	7,835	8,187	8,400	8,555	8.677	8,778	7	0,940	9.007	9,067	9,122	9,173	9,219	9,263	9,303	9,341
N/ha	90	5,254	7,793	8,143	8,355	8,509	8,630	8,751	0,817	8,892	8,958	9,018	9,022	0.400	0 470	0.242	0.050	0 001
	80	5,222	7,746	8,094	8,305	8,458	8,578	8	8,764	8,838	8,904	8,964	9,	sopr	odu	ct co	nto	Jr 5
(kg	70	5,186	7,693	8,039	8,248	8,400	8,520	8,619	2 704	8,778	8,844	8,903	8,			8.7t/		2
z	60	5,146	7,633	7,976	8,183	8,334	8,453	8,551	8,635	8,709	8,774	8,833	8,1	y/(0.74		0
Applied	50	5,098	7,562	7,902	8,107	8,257	8.375	8.472	8,555	8,528	0,693	8,751	8,804	1	8,898	8,940	8,979	0,016
ldd	40	5,040	7,476	7,812	8,015	8,163	8,279	8,375	58	8,530	8,594	8,652	8.704	8,752	8,797	8,838	3,877	8,913
۲	30	4,966	7,366	7,69	27.41	12010		-		8,405	8,462	8,525	8,577	8,624	8,668	<u> 8.70</u> 9	8,747	8,783
	20	4,864	7,215	7,54		lsoco	ost li	ne		8,233	8,294	8,350	8,401	8,447	8,490	8,530	8,568	8,603
	10	4,695	6,964	7,27	Tota	l cost	$s = \frac{1}{2}$	200/	ha	7,946	8,005	8,059	8,108	8,153	8,194	8,233	8,269	8,303
	0	3,296	4,890	5,10	, etca		φ <u>γ</u>			5,579	5,621	5,659	5,693	5,725	5,754	5,781	5,806	5,830
		0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80

Applied P (kg P/ha)

Initial N = 160 kg N/ha Initial P = 10 mg/kg soil (Colwell P)

Least cost combination of 2 variable inputs

Applied N (kg N/ha)	70 60 50	5,186 5,146 5,098	7,6.3 7,633 7,562	8,039 7,976 7,902	8,248 8,181 8,107	8,400 8,334	8,520 8,453 8,375	8,619 8,551 8,472	8,704 8,635 8,555	8,778 8,709 8,628	8,844 8,774	8,903 8,833 8,751		Isoproduct contour <i>yield = 8.3t/ha</i>							
	40 30 20	5,040 4,966	7,476 7,366	7,812 7,698	8,015 7,898	8,163 8,044	8,279 8,152	8,376 8,253	8,458 8,334	8,530 8,405	8,594 8,468	8,654 8,525	9.70°	8,624	8,797	8,838	8,877 8,747	8,913 8,783			
	10	4,864 4,695 3,296	7,215 6,964 4,890 5	7,540 7,277 5,109 10	7,736 7,466 5,243 15	7,604 5,339 20	7,991 7,712 5,415 25	8,084 7,802 5,0 5,0	8,163 7,673 5,532 35	8,233 7,046 5,579 40	8,005 5,621 45	8,350 8,059 5,659 50	8,401 8,108 5,693 55	8,447 8,153 5,725 60	8,490 8,194 5,754 65	8,530 8,233 5,781 70	8,568 8,269 5,806 75	8,603 8,303 5,830 30			
	Û	0	2		Isocost line Budget constraint = \$130/ha																

Jobs, Transport and Resources

Conclusions

Economic Development Jobs, Transport and Resources

Conclusions

- "Response surface analysis" can be used to assess crop nutrient demands and predict yield potential and pay-offs associated with high input use in the HRZ environment.
 - The method distils key technical information from complex crop models such as CAT.
 - The method uses conventional response curves for current time period.
 - Accommodates risk and uncertainty in production outcomes and prices using 'what-if' analysis and tactical responses such as split N applications.
 - Requires growers to re-evaluate decisions on an annual basis, keep testing costs in their fertiliser budget, as recommended by BCG.
- The two nutrient approach is preferred.
 - Relaxes the assumption that other nutrients are unlimiting.
 - Accommodates a budget constraint.
 - ✤ Analytic solutions are simple.
 - The tool is intuitive and easy to use.
 - It can be operational at various levels of sophistication, ranging from Fact Sheets to an interactive spreadsheet model or web application.

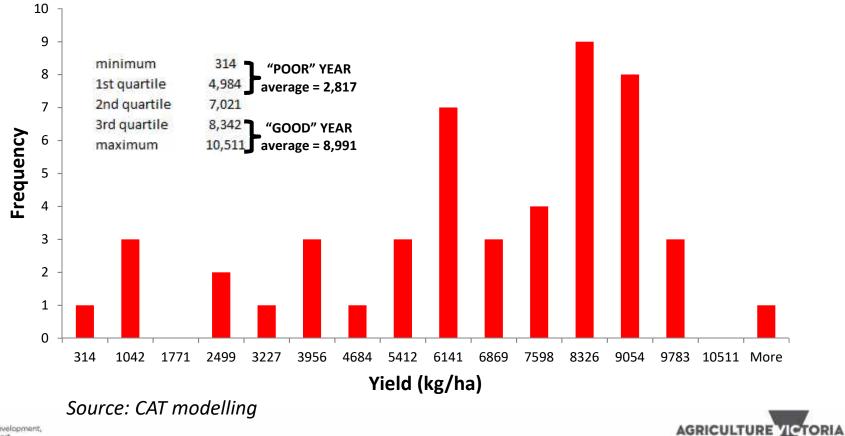
Further Work

Economic Development Jobs, Transport and Resources

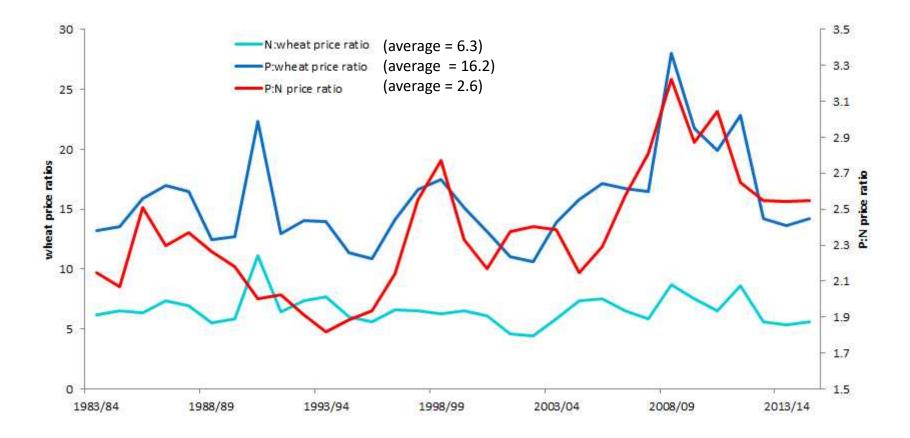
Further work: for discussion

- Agree on and run a few crop modelling scenarios.
- Agree on how to define "good", "normal" or "poor" seasons.
- Do mock-ups for canola as well as wheat.
- Agree on rules on how to convert starting soil nutrient levels (or residual fertiliser) to units of applied nutrient for estimating the response functions.
- Do mock-ups for N&K and N&S as well as N&P.
- Refine P responses in CAT?
- Explore alternative functional forms for the response functions?
- Accommodate penalty for commercial v. experimental or modelled yields?
- Accommodate crop quality attributes (eg grain protein)?
- Test the preferred concept for the 'tool' and selected scenarios with farm management consultant and/or growers.
- For another project (?): incorporating a 'residual value function' and quantifying dynamic "maintenance" response curves.

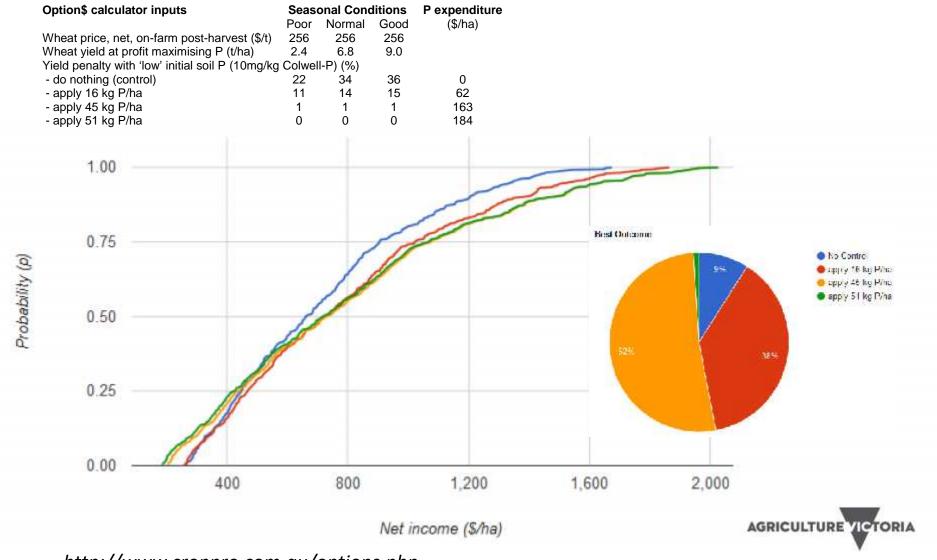
Spares


Economic Development, Jobs, Transport and Resources

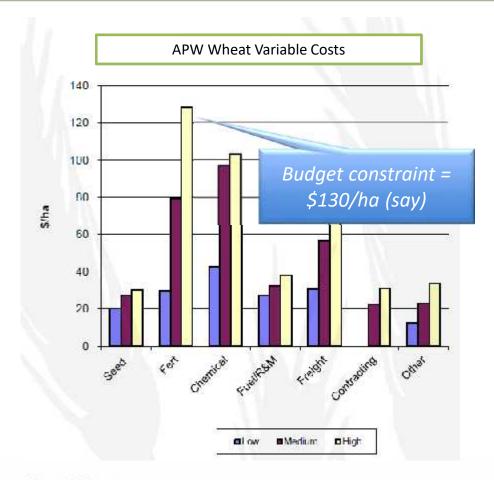
Omission trial sites



Production risk: Inverleigh, wheat, nutrients unlimiting


Price Risk

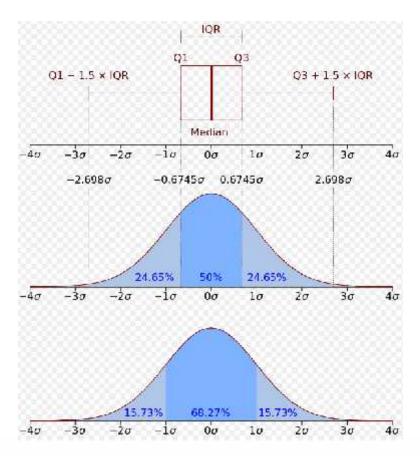
Source: derived from ABARES commodity price data



Link with existing tools: e.g. Option\$ calculator

http://www.croppro.com.au/options.php

Budget constraint


Fertiliser accounts for about 30% of variable costs in HRZ cropping and requires considerable additional working capital.

How to allocate between a range of fertiliser types where cash flow is tight?

Source: PIRSA 2015 Farm Gross Margin Guide

Quartiles: normal distribution

