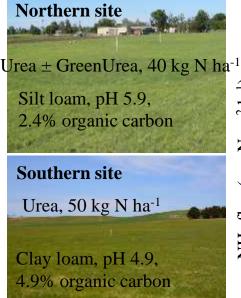
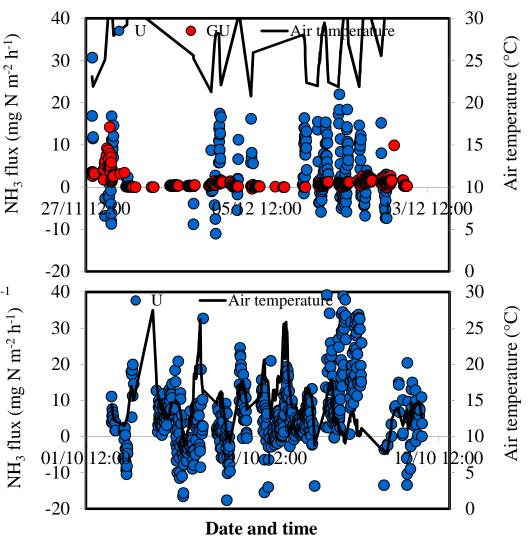
NH₃ emissions from grazing pasture following urea and urease inhibitor treatments (Poster # 12)

Mei Bai¹, Helen Suter¹, Shu Kee Lam¹, Rohan Davies², Deli Chen¹

¹ Crop and Soil Sciences Section, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia ²BASF Australia Ltd., Southbank, VIC 3006, Australia

Australian Government


Department of Agriculture, Fisheries and Forestry



- Two sites:
- Pasture applied with Urea/urea + urease inhibitor (Green UreaNVTM)
- Emissions calculated with Inversedispersion model combined with open-path NH₃ concentration sensor

Table 1 Daily average NH_3 fluxes from the northern and southern sites. Total N loss as volatilised NH_3 over the measurement periods (12-15 days) at the northern and southern sites are also calculated

		Daily average NH_3 (mg N m ⁻² h ⁻¹)	N loss as volatilised NH ₃ (%)
Northern site	Urea	4.39 ± 0.46	39.5
	Green UreaNV TM	1.25 ± 0.15	11.3
Southern site	Urea	6.40 ± 1.23	59.5

Conclusions

1. Inverse-dispersion technique combined with open-path NH_3 laser is able to measure gases loss from fertilizer treated large-scale fields.

2. Nitrogen loss as volatilised NH_3 from the urea application accounted for 40 and 60% of total applied N for the northern and southern sites, respectively.

3. Urease inhibitor effectively reduces NH_3 emissions by ~ 70% compared with urea treatment.