

Monitoring the N release from organic amendments using proximal sensing

Daniele De Rosa, David Rowlings, Johannes Biala, Clemens Scheer, Bruno Basso, Massimiliano De Antoni Migliorati, Peter R. Grace

AIM

Compare the three main Vis currently in use (NDVI, NDRE and CCCI) to monitor the N content of a vegetable crop to asses the efficiency of an optimized organic amendments application strategy

Methodology

SITE

Gatton- South-East Queensland (Vertosol)

TREATMENTS

Two seasons of Lettuce (Lactuca sativa) 2014-2015

First season:

Raw feedlot manure (Ma) @ 100% and reduced (100% - $N_{(min \, org \, amend)}$ +Opt) mineral N-fertilizer based on standard farm practices (CONV).

Second season:

Only Ma and Ma+Opt

MONITORING

- 1. Soil plant available N
- 2. Plant reflectance at RED, RE and NIR (670, 730, and 780 nm)
 RapidSCAN CS-45

Results and conclusions

	NDVI	NDRE	CCCI	RE
R^2	0.60	0.67	0.61	0.23
significance	***	***	***	***
RMSE	0.67	0.61	0.66	0.93
Model	Linear	Linear	Linear	Linear

- The NDRE best index
- The temporal trend of NDRE allowed to :
- early detect the surplus of soil plant available N in the +CONV treatment in the 2014 season
- crop N deficiency in the Ma treatment during the 2015 season

NDRE during the mid/late stage of Lettuce development, with the inclusions of non-limiting N plot, has the capability to assess whether the crop is receiving sufficient N under an optimized organic amendments strategy