

Residual effect of nitrification inhibitors enhances NUE in a cropping system

Miguel Quemada*, Jose Luis Gabriel and María Alonso Technical University of Madrid

The reduction of N losses with NI-fertilizers is widely documented, while the effect on crop yield or N use efficiency (NUE) is still not clear

There is a need to identify cropping systems or environmental conditions in which NI-fertilizers enhance crop yield and NUE

Quemada et al. 2013. Agric. Ecosyst. & Environ. 174: 1-10

- Most research focus on the annual effect of NI on crop yield
- In a two-year field experiment Sharma and Prasdaq (1996) suggested a possible cumulative effect on wheat yield grown after maize fertilized with DCD
- Increase in soil residual N has been reported in various
 laboratory experiments

Hypothesis: NI could increase the soil N supply capacity over time and contribute to an enhancement of N recovery in the cropping system

The objectives were to determine:

1.- The effect of NI-fertilizers applied over maize during two seasons on yield and NUE compared to conventional fertilizers

2.- The soil residual effect of NI-fertilizers, assessed in a non-fertilized sunflower planted during a third season

3.- The possible sources of residual N via laboratory determinations

×Farm "La Chimenea"

Location: Aranjuez, Taxus river Valley

Climate: Dry Mediterranean, monoxeric (June-September)
 Mean temperature: 20.5 °C, maximum,14 °C and minimum 6.5 °C
 Mean rainfall: 415 mm
 ETo=750 mm

Depth (cm)	0-23	23-40	40-70	70-120
pH (1:2.5)	8.1	8.1	8.0	7.8
Organic Matter (g kg ⁻¹)	31	29	21	22
$CO_3 (g CO_3^{2-} kg^{-1})$	198	201	159	181
Sand (g kg ⁻¹)	260	250	250	250
Silt (g kg ⁻¹)	490	510	520	460
Clay (g kg ⁻¹)	250	240	230	290

ASN-130

ENTEC-170

ENTEC-130

CONTROL

Factorial design with two factors (fertilizer type and rate) and two levels5 Treatments x 3 ReplicationsPlot size = 12 m x 6 m

Treatments:

- Ammonium sulphate nitrate (ASN) at the recommended rate: 170 kg N ha⁻¹
 ASN-170
- Ammonium sulphate nitrate (ASN) at a reduced rate rate: 130 kg N ha⁻¹
- ASN + DMPP (ENTEC[®]) at the recommended rate: 170 kg N ha⁻¹
- ASN + DMPP (ENTEC[®]) at the reduced rate: 130 kg N ha⁻¹
- Control: 0 kg N/ha

	MAIZE	MAIZE	SUNFLOWER
	2013	2014	2015
Sowing	18 April	7 April	30 April
Fertilizer application	25 May	26 May	
Harvest	7 October	25 September	1 September

Water balance (≈ 1.1 x Crop needs FAO)

Yield, Biomass Crop analysis N concentration N content

*In maize, determined at harvest *In sunflower, at full flowering stage

Soil inorganic N content

Until 1 m depth, 0.2 m depth intervals, at crop sowing and harvest Soil extraction with 1 M KCL and determination of NH_4^+ and NO_3^-

Residual effect of the NI fertilizers (lab. determinations):

• N mineralization potential aerobic incubation (10 weeks) 1 year after fertilizer application Top soil samples (0-20 cm)

N use efficiency components

Non-exchangeable NH₄⁺
 ¹⁵N determination and total N
 1 year after fertilizer application
 0-20; 20-40; 40-60 cm soil

Agronomic efficiency (AE _N)	Nitrogen recovery efficiency (RE _N)
Grain yield _{treatment} – Grain yield _{control}	N content _{treatment} – N content _{contr}
N fertilizer applied	N fertilizer applied
Maize	Maize and sunflower
2013	2013 2015
2014	2014
	+
	Total RE _N
Σ_2^2	$\sum_{013}^{015} \text{Ncontent}_{\text{treatment}} - \sum_{2013}^{2015} \text{Ncontent}_{\text{co}}$
	\sum_{2013}^{2015} N fertilizer applied

Results: Maize

	Yield	%N grain	Grain N content	Crop N content
Treatment	Mg ha ⁻¹	%	kg N	N ha ⁻¹
			2013	
Control	6.4 b	1.16 b	74.6 b	107.9 b
ASN- 130	8.6 ab	1.34 a	115.8 a	168.2 a
ASN- 170	10.0 a	1.34 a	134.4 a	212.3 a
ENTEC-130	9.1 ab	1.37 a	125.3 a	191.6 a
ENTEC-170	9.7 ab	1.34 a	129.4 a	190.4 a
			2014	
Control	5.0 c	1.14 b	55.8 b	69.1 c
ASN- 130	7.6 b	1.12 b	85.9 b	114.1 bc
ASN- 170	10.7 a	1.15 b	123.4 a	162.8 ab
ENTEC-130	11.3 a	1.33 ab	150.7 a	186.4 a
ENTEC-170	10.6 a	1.46 a	154.8 a	196.2 a

Differences were observed at the second year of fertilizer application

Results: Agronomic efficiency

	Agronomic efficiency	N recovery efficiency
		2013
Туре	ns	ns
Rate	ns	ns
Type x Rate	ns	ns
		2014
Туре	*	*
Rate	ns	ns
Type x Rate	*	ns
60 2013 50	2014	a
40 -		b b
30 -	С	
20 -		
10 -		
ASN- 130 ASN- 170 ENTE	C-130 ENTEC-170 ASN- 13	0 ASN- 170 ENTEC-130 ENTEC-170

Results: N recovery efficiency

	Agronomic efficiency	N recovery efficiency
	20	13
Туре	ns	ns
Rate	ns	ns
Type x Rate	ns	ns
	20	14
Туре	*	*
Rate	ns	ns
Type x Rate	*	ns

Results: Sunflower

NON-FERTILIZED SUNFLOWER - 2015

Sunflower N content

Tuestaes	N content		
Ireatment	kg N ha ⁻¹		
Control	25.6 d		
ASN- 130	50.5 c		
ASN- 170	79.2 b		
ENTEC-130	72.5 b		
ENTEC-170	100.0 a		

Results: N recovery efficiency

	N recovery efficiency
	2013 →2015
Туре	*
Rate	ns
Type x Rate	ns

 $2013 \rightarrow 2015$

What are the sources of the residual N effect?

Soil ammonium fixed increases?

(Nieder et al., 2011. Biology and Fertility of Soils 47, 1-14)

Conclusions

• ENTEC[®] (ASN blended with DMPP nitrification inhibitor) increased the N use efficiency in a three year rotation with respect to conventional ASN

• In the following year after application, the ENTEC[®] fertilizer rate was reduced 23% from the recommended rate in the region without decreasing maize yield

• The non-fertilized sunflower planted after the maize was able to scavenge more N in treatments previously treated with ENTEC[®]

• The **residual effect** of ENTEC[®] treatments was explained by an increase in nonready soil N available forms during at least one year, that were subsequently released to meet crop demand. These forms were soil N microbial biomass and nonexchangeable NH₄⁺ pools.

• **Multi-year studies** of the residual effect of fertilizers with NI in different soils and cropping systems may contribute to the best practice of this fertilizer technology

Alonso-Ayuso et al. 2016. European Journal of Agronomy, 80:1-8

Thank you for your attention

http://blogs.upm.es/agsystems