

Dual effects of nitrification inhibitors on N₂O emission from agriculture

Shu Kee Lam¹, Helen Suter¹, Rohan Davies², Mei Bai¹, Jianlei Sun¹, Arvin R Mosier¹, Deli Chen¹

¹ Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Australia

² BASF Australia Ltd., Australia

Background

- N₂O: a greenhouse gas approximately 300 times more potent than CO₂
- Global agriculture contributes around 60% of total anthropogenic N₂O emission (Ciais et al. 2013).
- Nitrification inhibitors are recommended by the IPCC as a potential mitigation option for agricultural N₂O emission.
- Nitrification inhibitors: NH₄⁺ NO₃⁻

Dual effects of nitrification inhibitors

- Nitrification inhibitors decrease N₂O emission by 31–48% across diverse agricultural ecosystems.
- However the inhibitors prolong the retention of NH₄⁺ in soil, and increase NH₃ emission by 20–40% (meta analyses by Akiyama *et al.*, 2010; Qiao *et al.*, 2015)
- NH₃ deposition:
 - a major threat to environmental quality and ecosystem biodiversity (Erisman et al. 2008)
 - indirectly contributes to N₂O emission (van der Gon & Bleeker 2005)

Knowledge gap

- Previous meta-analyses
 - included studies focussed on either N₂O or NH₃
 - expressed the effect as % change, not absolute difference in nitrogen
- No review on studies that simultaneously measure N₂O
 and NH₃ emissions in the field under the treatment of
 nitrification inhibitors

Methodology

- Literature search: Web of Science, Scopus, CAB Abstracts, Academic Search complete and Google Scholar
- IPCC emission factor EF₄ (indirect N₂O emission from NH₃ volatilization and deposition):
 - Default: 1%
 - Upper range: 5%

Agricultural system	Inhibitor	Effect of nitrification inhibitor (NI)						Overall NI effect on	
		Direct N ₂ O emission			NH ₃ volatilization			N₂O emission	
		%	Amount (kg N ha ⁻¹) (I)		%	Amount (kg N ha ⁻¹) (II)		(kg N ha ⁻¹) (I + II × EF ₄) EF ₄ = 1% EF ₄ = 5%	
Cropping	N-serve	-49.9	-0.57		+64.9	+12.75		-0.44	+0.07
Cropping	N-serve	-19.2	-0.27		+37.5	+15.80		-0.11	+0.52
Cropping	DCD	-20.4	-0.79		-3.7	-0.40		-0.79	-0.81
Cropping	DCD	− 52.3	-1.36		+3.1	+0.35		-1.35	-1.34
Cropping; pasture	DCD	- 46.5	-0.52		+6.1	+2.20		-0.50	-0.41
Cropping; pasture	DCD	-28.7	-0.48		+5.4	+0.15		-0.48	-0.47
Pasture	DCD	-56.8	-1.24		-0.8	-0.97		-1.25	-1.29
Pasture	PD	-10.6	-0.23		+4.0	+4.87		-0.18	+0.01
Pasture	DCD	-30.1	-0.38		+7.7	+2.55		-0.36	-0.26
Pasture	DCD	- 42.1	-2.93		+35.5	+18.65		-2.74	-2.00
Pasture	DCD	- 40.5	– 2.15		+13.3	+13.87		-2.01	-1.46
Pasture	DCD	- 37.1	-4.47		+43.4	+12.60		-4.34	-3.84
Pasture	DCD	-4 6.8	-4.33		+18.2	+8.00		-4.25	-3.93
Pasture	DCD	-38.6	-4.40		+9.1	+2.00		-4.38	-4.30
Pasture	DCD	-20.0	-0.30		+17.2	+8.60		-0.21	+0.13
Pasture	DMPP	- 7.9	-0.18		+13.9	+1.80		-0.16	-0.09
Pasture	DMPP	-8.8	-0.39		– 51.7	-0.15		-0.39	-0.40
Pasture	DMPP	- 29.1	-4.51		+42.0	+3.16		-4.48	-4.35

Lam et al. 2016, Global Change Biology

Knowledge gap

- No study on vegetable production systems (intensive N input)
- Chamber techniques for N₂O (closed) and NH₃ (open) emissions were widely used

Case study—vegetable farm

- The National Agricultural Nitrous Oxide Research Program (NANORP) in Australia
- Vegetable production system
 - Boneo, Victoria
 - Chicken manure with and without 3,4-dimethylpyrazole phosphate (DMPP)
 - 255 kg N ha⁻¹ as manure; 39 kg N ha⁻¹
 Nitrophoska® x 5

Micrometeorological methods

NH₃ and N₂O measurements

- open-path Fourier transform infrared (FTIR) spectroscopy
- paddock-scale (4 ha); continuous; non-intrusive

DMPP effect on NH₃ and N₂O emission

<u>N₂O</u>

– DMPP: 5.7 kg N ha⁻¹

+ DMPP: 3.6 kg N ha⁻¹

decreased by 37%

NH_3

- DMPP: 12.4 kg N ha⁻¹

+ DMPP: 17.2 kg N ha⁻¹

increased by 39%

Summary

- Nitrification inhibitors effectively decrease N₂O emission.
- This beneficial effect can be weakened or even reversed by the increase in indirect N₂O emission from deposited NH₃.
- The inclusion of indirect N₂O emission is critical for evaluating the effectiveness of nitrification inhibitors in mitigating greenhouse gas emissions from agriculture.

Recommendations

- Appropriate NH₃ mitigation measures should be taken where nitrification inhibitors are used:
 - double inhibitor (combining nitrification and urease inhibitors)
 - NH₄+ based N input: substances with a high affinity for binding onto NH₄+ ions e.g., zeolite and lignite
 - where practical, manure/fertilizers should be incorporated into soil

Acknowledgements

Funding bodies

Australian Government Department of Agriculture Incitec Pivot Fertilisers

Landholder

Lamattina, Australia

Field and laboratory assistance

Trevor Coates, Sima Mazaherinia, Eric Ireland, Rifaath Hussain, Muhammad Shakir

Australian Government
Department of Agriculture

