

FACULTY OF VETERINARY & AGRICULTURAL SCIENCES Dissimilatory nitrate reduction to ammonium, denitrification and anaerobic ammonium oxidation in paddy soil

Arjun Pandey, Helen Suter, Jizheng He and Deli Chen

Background and methods

DNRA: Dissimilatory nitrate reduction to ammonium Anammox: Anaerobic ammonium oxidation

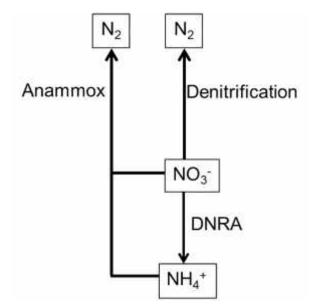


Fig.1. Microbial N transformation pathways in paddy soil

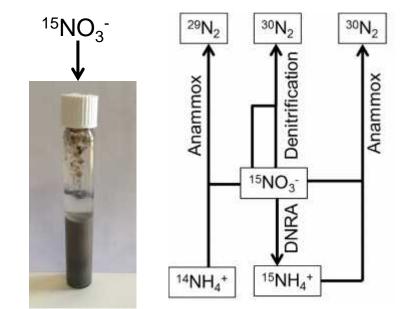


Fig.2. Microbial N transformation pathways in incubation vials with ¹⁵NO₃⁻ tracer

Poster #76

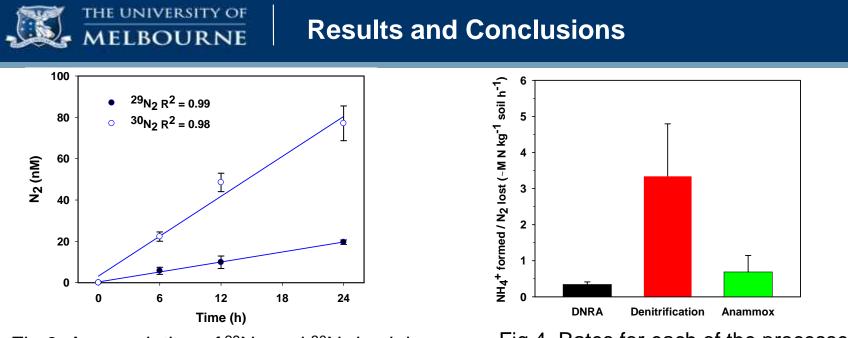


Fig.3. Accumulation of ${}^{29}N_2$ and ${}^{30}N_2$ in vials.

Fig.4. Rates for each of the processes.

- Denitrification (3.35 µM N₂ hr⁻¹ kg⁻¹ soil) dominates N transformation during the first week of flooding of rice paddies.
- DNRA (0.34 µM NH₄⁺-N hr⁻¹ kg⁻¹ soil) and anammox (0.65 µM N₂ hr⁻¹ kg⁻¹ soil) are also important N transformation pathways.

Poster #76