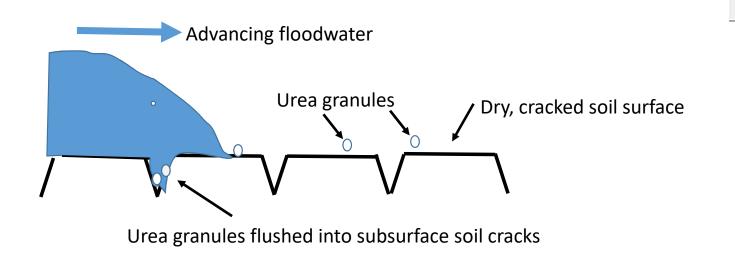
Temporary immobilisation promotes high ntrogen use efficiency of irrigated rice

John Angus^A, Peter Bacon^B and Russell Reinke^C

CSIRO Agriculture and Food, Canberra Woodlots and wetlands, Sydney International Rice Research Institute, Philippines

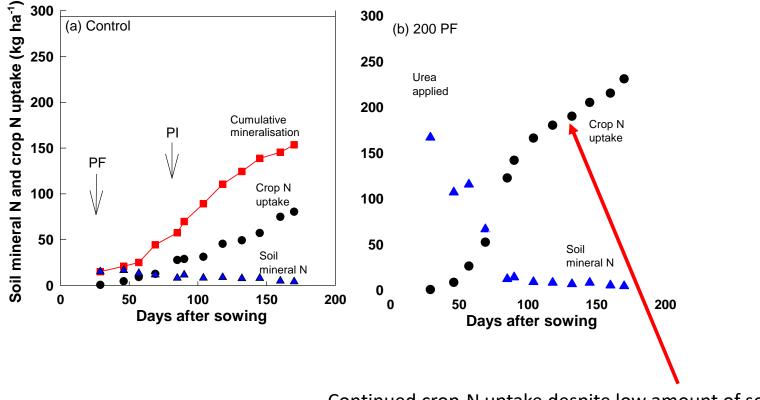
Background to Riverina rice


- Riverina: 200 -400 km north of Melbourne
- Fully irrigated, high solar radiation, few pests
- Average yield of medium grain rice 11 t/ha
- Average fertiliser use \approx 180 kg N ha⁻¹, \approx ³/₃ before flooding
- NUE in farm survey ≈ 60% above-ground N / N applied
- Why is NUE relatively high under these conditions?

Rice yield in response to 200 kg N/ha as urea applied at permanent flood (PF) or panicle initiation (PI)

	Yield (t/ha)	NUE (%)
ON	7.3	
200N – PF*	13.6	76
200N – PI*	11.4	39

Why is pre-flood N application so efficient?


• Hypothesis 1: urea granules are flushed below the depth of denitrification.

Command

Why is pre-flood N application so efficient?

Hypothesis 2: temporary immobilisation of fertiliser followed by remineralisation

Continued crop-N uptake despite low amount of soil mineral N. Was this N remineralised after immobilisation?