

Nitrogen use efficiency and farmer engagement

International Nitrogen Initiative Conference: Concurrent session 5A 'national and community nitrogen footprints'

Overview

- The challenges
- Our solution
- Why we did what we did
- Case study: producers & advisors
- How the process can influence decision making

The challenges at hand - cropping

- Reliance on recipes for N fertiliser application
- Lack of soil testing for available N
- Lack of nutrient budgeting based on removal rates
- Application of too much or too little N fertiliser

The challenges at hand - cropping

Our solution needed to be:

- Engaging producers & advisors
- Simple, using data on hand
- Relatable
- Relevant & practical
- Manageable
- Conducive to decision making
- Useful to compare paddocks, crops & farms

What we did about it

Partial nitrogen balance

NUE % = NCR/NFI X 100

N crop removal (NCR) (= all parts of the crop that are harvested and removed e.g. grain and straw), divided by mineral N fertiliser input (NFI), both in kilograms per hectare (kg/ha). The result is expressed in % NUE.

NUE% - what the science tells us

Ratio of fertiliser nitrogen to nitrogen removed via biomass removal (e.g. harvest, grazing)

NUE = N removal / N application * 100

What we did about it

Potato crop NUE% - what the farmer's data tells us

N fertiliser input vs. NUE% (Simplot, Australia)

Potato crop NUE% - what the farmer's data tells us

N fertiliser applied vs. yield (Simplot, Australia)

NUE% - what the farmer's data tells us

2015 data from a dairy/cropping farmer

Crop	Fertiliser N input (kg/ha)	N removed (kg/ha)	NUE%
Potatoes (overall)	465	334	72
Potatoes (lowest yielding)	465	284	61
Potatoes (highest yielding)	465	395	85
Poppies	166	57	34

Soil testing

Data: AgVita Analytical

What we found

Crop	Average NUE	Range	n
Poppies	50%	35 – 85%	8
Potatoes	109%	57 – 233%	57
Wheat	160%	93 – 271%	6

How it impacts decision making on farm

N application rate (kg N/ha)	N removal (kg N/ha)	NUE (%)	Interpretation	
0	26	·*·	Soil mining 1	
48	56	116		
96	92	96	Risk of soil mining ²	
144	126	88	Balanced in- and outputs 3	
192	151	79		
240	166	69	Risk of high N losses 4	

(1) Soil mining = N removal exceeds N input -> declining soil fertility and yield = unsustainable

(2) Risk of soil mining = additional N requirement for roots and straw is not met by N input

(3) Balanced in- and outputs = N fertilizer input meets total crop demand (grain, straw, roots)

(4) Risk of high N losses = N fertilizer input exceeds total crop demand -> increased risk of leaching

Data from the long-term "Broadbalk Experiment", Rothamsted/UK, winter wheat, avg. yield of 1996-2000

Monitoring

Key points

 The NUE% data is useful for monitoring efficiency over time

 Starting with complex information is less effective in supporting the decision making process with farmers and

advisors

Thank-you

Any questions?

Acknowledgements

Project team members: Donna Lucas, Doris Blaesing, Anna Renkin, Adrian James, Sophie Folder, Jencie McRobert.

The project was supported by funding from the Australian Government.