Fates of the applied nitrogen fertilizer after harvesting wheat on dryland soil

ZHOU Jianbin, LIANG Bin, ZHAO Wei, XIA Mengjie, YANG Xueyun

College of Natural Resources and Environment/ Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, MOA, Northwest A&F University

Outlines

- 1. Background
- 2. Approach
- 3. Results
- 4. Conclusions

1.Background

China has consumed near 1/3 of synthetic fertilizers in the world.

Recovery rate of N fertilizer after a growing season in China is about 1/3 of N fertilizer added (30%-35%).

Table 1 Results of N fates from different researches

N fates	Huack (1984)	Glendining et al.(1997)	Sebilo et al (2013)	Ju et al (2009)	Angus (2016)
Uptake	50%	51%	45-50%	18-31%	44%
Residual in soil	25%	30%	32-37%	22-46%	34%
Loss	25%	19%		22-49%	22%
References	Nitrogen in Crop Production, ASA-CSSA- SSSA	Plant and Soil, 1997	PNAS	PNAS	INI conference

Averagely, 1/3 of N added retained in soil after a growing season.

The soil in the Loess Plateau with very deep profile.

Our concerns:

The fate of residual N in this soil?

2. Approach

Adding ¹⁵N-urea in the different fertilization treatments of a long-term fertilization experiment (Since 1990-, Yangling, China)

Code	Different fertilized soils
No-F	No fertilizer (No-F)
NPK	Inorganic N, P, and K fertilizers
MNPK	Cattle manure + NPK fertilizers (70% of N from manure, and 30% from inorganic N fertilizer)

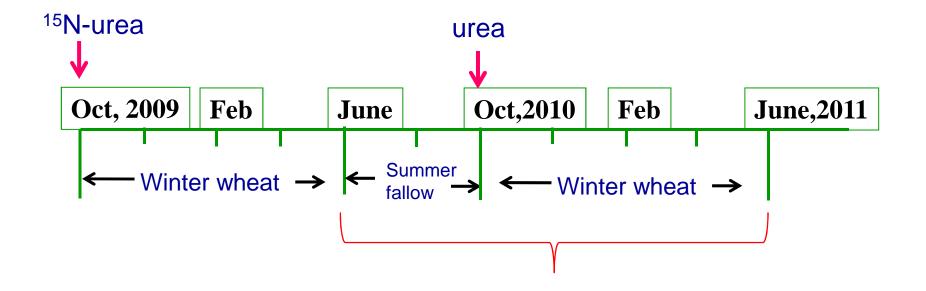


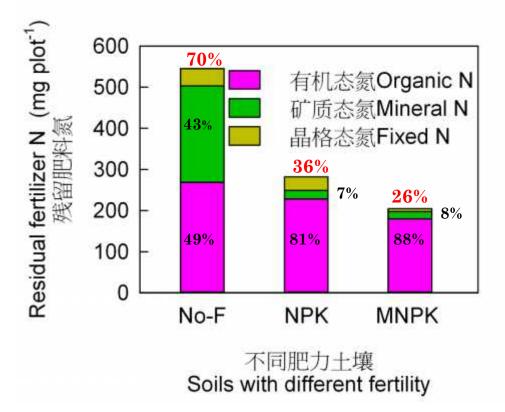
Table 1 The properties of three different fertilized soil for 19-years (0-15 cm)

Soils	Organic C (g kg ⁻¹)	Total N (g kg ⁻¹)	Mineral N (mg kg ⁻¹)	Olsen- P (mg kg ⁻¹)	Available K (mg kg ⁻¹)
Control	7.50	0.90	7.6	3.2	177
NPK	9.20	1.10	11.1	44.4	279
MNPK	13.20	1.40	27.2	110.7	345

Winter wheat-fallow

¹⁵N fertilization and crop rotation

¹⁵N isotope method:


Micro-plot (soil column) experiment added with ¹⁵N fertilizer

October, 2009

3. Results

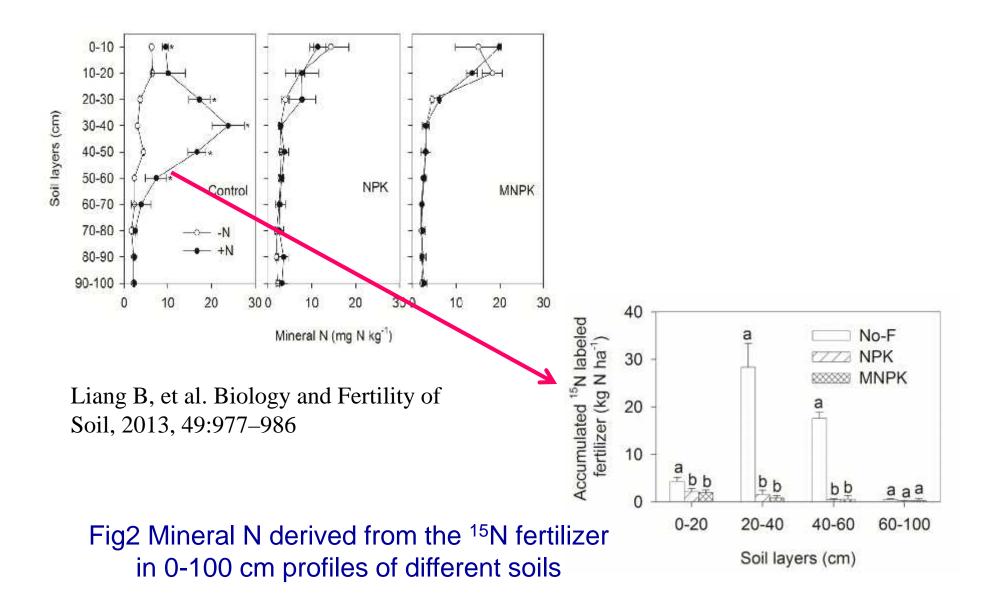
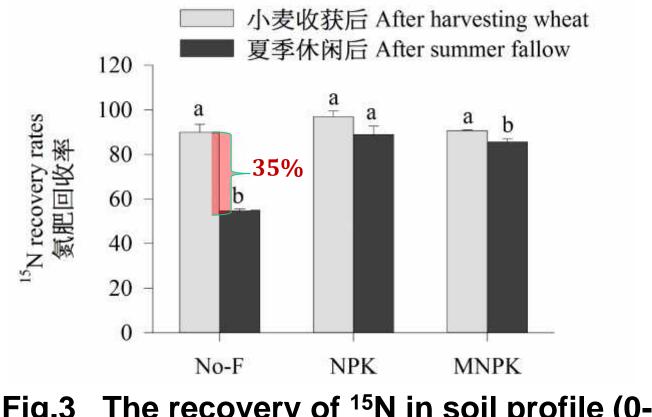

Forms and contents of residual N after harvesting the wheat in June, 2010

Figure 1 Forms and contents of residual fertilizer N after harvesting the wheat

Zhao Wei et al. Soil Science and Plant Nutrition, 2015, 61:846-855

Mineral N in soil profiles after harvesting wheat



Summer fallow (late June to September) is a common practice on dryland farming to conserve water and regenerate soil fertility.

Rain season: 2/3 of annual rainfall during the three months
High residual fertilizer N in soil

High potential of N loss?

Fig.3 The recovery of ¹⁵N in soil profile (0-100 cm) after wheat harvesting and summer fallow

High rate of residual ¹⁵N fertilizer in No-F soil after harvesting wheat was lost during the summer fallow.

Residual N used by the second wheat

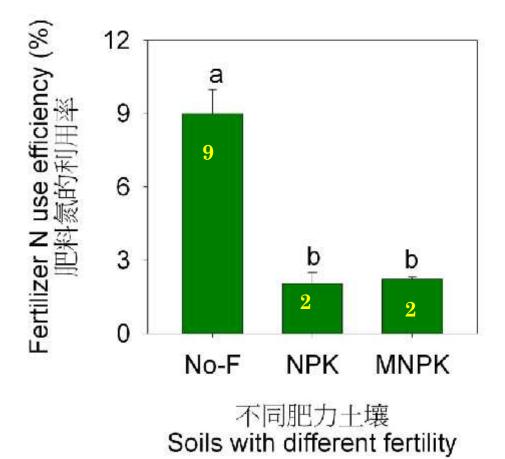
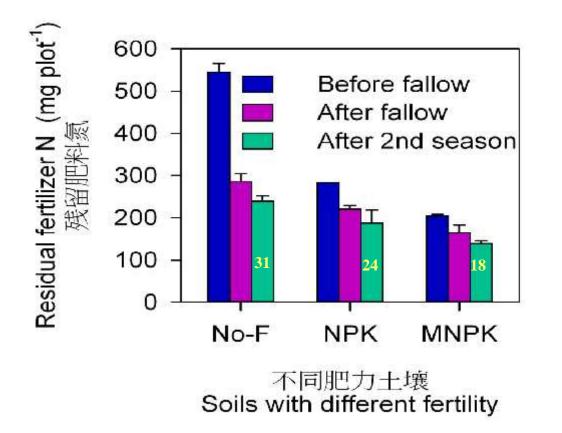



Figure4 Recovery rate of residual N used by the second wheat (percentage of ¹⁵N added)

Residual N at the different times

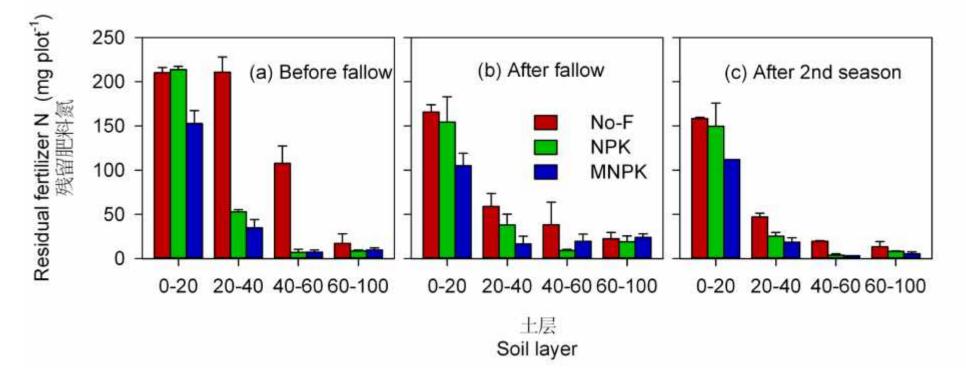


Figure 5 Residual N at the different times (summer fallow and after harvesting the second wheat)

About 20-30% of the added N was still remained in soil after harvesting the second wheat.

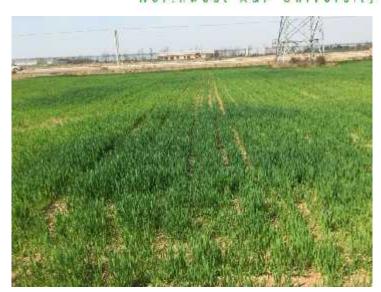

Residual N in soil profiles at the different times

Figure 6 Residual N in soil profiles (0-100 cm) at the different times

4. Conclusions

The residual N in soil after harvesting crop is not totally lost from soil. It could be used by the next crop in dryland.

The plot sizes of a 10 yrs N rate experiment (2003-2013) after 3 years of stopping addition of N fertilizer (March, 2016)

How to prevent loss on residual N during summer fallow is an important issue.

The re-use of residual N in soil with deep profile (such as the loess Plateau)?

Projects from NFSC (No. 31372137, 4571087) and MOST.

■UC Davis Stable Isotope Facility for measuring ¹⁵N samples

Thanks + questions?