Nitrogen input to croplands and its environmental impacts in China Xiaoyuan Yan Institute of Soil Science Chinese Academy of Sciences Xuejun Liu College of Res. & Env. Sci. China Agricultural University - Spatial and temporal changes in N input and NUE - Efforts in improving NUE - Environmental impacts - Biodiversity loss - Soil acidification - Greenhouse gas balance - Eutrophication - Air pollution - Spatial and temporal changes in N input and NUE - Efforts in improving NUE - Environmental impacts - Biodiversity loss - Soil acidification - Greenhouse gas balance - Eutrophication - Air pollution ### Nitrogen input to croplands #### Spatial and temporal variation of N input to croplands ## Nitrogen use efficiency (NUE) ## SOC and soil N content changes #### National soil survey #### Soil sampling campaign C:+8.8% N:+5.1% ## Change in NUE with time #### **Environmental Kuznets Curve** Zhang et al., 2015, Nature 528, 51-59 ## Changes in NUE with economy growth ## Heilongjiang and Inner Mongolia ## Shanghai and Beijing #### Urban area, economically developed, consistent low NUE ## Zhejiang and Guangdong #### Yunnan and Guizhou ## Major agricultural region High or middle level economy Major agricultural provinces Largely increased soil N Increasing NUE Courtesy of Huang Yao - Spatial and temporal changes in N input and NUE - Efforts in improving NUE - Environmental impacts - Biodiversity loss - Soil acidification - Greenhouse gas balance - Eutrophication - Air pollution #### Knowledge-based N practices #### Enhanced efficiency N fertilizers Controlled release N fertilizer Nitrification inhibitor Urease inhibitor #### Optimized N application Reducing basal fertilizer N ratio Increasing N splitting frequency Deep placement of fertilizer Fertilizer recommendation based on soil test #### Fertilization based on soil test program An accumulative area of 100 million hector by 2015 ## Fertilizer recommendation systems Computer access Palm access Touching panel #### Effects on productivity and N loss #### **Loss indexes** Achieved on an average N reduction of 28% #### Barriers - Effects of these N practices varied among different crop species and soil properties. - Many farms are still small scale, farmers' knowledge, environmental awareness still need to improve - Opportunity cost (time, labor, training/education costs) for implementing - Lack of mechanization National geography, 2011 - Changes in nitrogen input and NUE - Efforts in improving NUE - Environmental impacts - Biodiversity loss - Soil acidification - Eutrophication - Air pollution # Significant increase in leaf N in natural vegetation (a) and N uptake in long-term unfertilized croplands (b) during 1980s and 2000s. #### **Foliar N concentration** 1980s: 18.1±7.2 mg/g 2000s: 24.0±9.2 mg/g Increase: 5.9 mg/g (+30%) #### **Crop N from zero-N plots** 1980s: 71.1 kg N ha⁻¹ 2000s: 82.4 kg N ha⁻¹ Increase: 11.3 kg N ha⁻¹ (+15%) These results suggest N enrichment in China's terrestrial ecosystems since 1980. *, *** denote significant difference at 0.05, 0.001 level. (Liu et al., 2013. Nature, 494:459-462) - Changes in nitrogen input and NUE - Efforts in improving NUE - Environmental impacts - Biodiversity loss - Soil acidification - Eutrophication - Air pollution #### Impact of N addition on grassland plant community (Song et al, 2012. J. Arid Land) # Elevated N deposition (e.g. 30 kg N ha⁻¹) led to significant decline in forb species richness in temperate grassland (Duolun, IM) #### Relationship between N addition rate and species richness (Song et al, 2011, Biogeosciences) #### Biodiversity loss and recovery under various N addition conditions Relationship between N addition rate and species richness for grasses (a) and forbs (b) from 2005 to 2015. (Hao et al., 2016. unpublished) - Changes in nitrogen input and NUE - Efforts in improving NUE - Environmental impacts - Biodiversity loss - Soil acidification - Eutrophication - Air pollution ### Significant Acidification in Major Chinese Croplands J. H. Guo, et al. Science 327, 1008 (2010); DOI: 10.1126/science.1182570 - Average pH decline was 0.5 units during 1980s and 2000s - Soil pH decline: Cash crop systems > Cereal crop systems **Table 1.** Topsoil pH changes in major Chinese croplands between the 1980s and 2000s. The soil groups are defined in (13). NS, not significant; pH range is an average (5 to 95 percentile). | Sail graup | 1980s | | 2000s | | | | | | |-----------------|---------------|---------------------|----------------------|----------------------------------|------------|--------------------|----------------------------------|----------------| | | Sample number | pH value | Cereal crop systems* | | | Cash crop systems† | | | | | | | Sample number | pH value | pH change | Sample number | pH value | pH change | | I | 301 | 5.37
(4.40–6.60) | 505 | 5.14
(4.17 - 6.52) | -0.23‡ | 337 | 5.07
(3.93 -6 .44) | -0.30‡ | | ii [*] | 1157 | 6.33
(5.00–8.04) | 1101 | 6.20
(5.00–7.70) | -0.13‡ | 413 | 5.98
(4.58–7.49) | -0 .35‡ | | Ш | 297 | 6.42
(4.50-8.30) | 211 | 5.66
(4.27 - 8.06) | -0.76‡ | 98 | 5.62
(4.27 – 7.73) | -0.80‡ | | IV | 562 | 6.32
(5.10-7.89) | 5 <mark>3</mark> 7 | 6.00
(4.84-7.60) | -0.32‡ | 238 | 5.60
(4.07–7.42) | -0.72‡ | | ٧ | 995 | 7.96
(6.39–8.80) | 850 | 7.69
(5.37–8.70) | -0.27‡ | 520 | 7.38
(5.69 - 8.20) | -0.58‡ | | VI | 493 | 8.16
(7.10-8.80) | 250 | 8.16
(7.49–8.82) | -0.00 (ns) | 10 | 8.17
(7.43–8.93) | 0.01 (ns | ^{*}Cereal/fiber crops (such as rice, wheat, maize, and cotton). [†]High-input cash crops (such as vegetables, fruit trees, and tea). # H⁺ production budget of main factors in four typical Chinese cropping systems. W-M: Wheat—maize; R-W: Rice-wheat; R-R: Rice-rice; G-V: Greenhouse vegetables. Changes of soil pH after 12-year fertilization in a wheat-maize cropping system (Annual N input 300 kg N/ha, Initial pH 5.7 in 1990) # Significant soil acidification across northern China's grasslands during 1980s-2000s YUANHE YANG*†‡, CHENGJUN JI*, WENHONG MA§, SHIFENG WANG‡, SHAOPENG WANG*, WENXUAN HAN¶, ANWAR MOHAMMAT ||, DAVID ROBINSON‡ and PETE SMITH‡ # Continuous N addition led to significant soil acidification and changes in microorganism communities #### Contents lists available at Serumgebreat #### Atmospheric Environment journal homepage, www.elsevier.com/locate/atmoschiv The contribution of atmospheric deposition and forest harvesting to forest soil acidification in China since 1980 Qichao Zhu ** 1, Wim De Vries 15 1, Xuejun Liu ** 2. Mufan Zeng **. Tianxiang Hao **, Enzai Du **, Fusuo Zhang **, Jianbo Shen ** (Zhu et al. 2016. AE) - Changes in nitrogen input and NUE - Efforts in improving NUE - Environmental impacts - Biodiversity loss - Soil acidification - Eutrophication - Air pollution 网络首页 十今日中国 十中国数据 十选律选织 十公文公福 上助为互称 十戒角定误 二工作动态 十大事任免 二新闻发布 当就位置。 首庆为 今日中国为 中国原位 # China's eutrophied lake area has increased from 135 (1970) to 8700 km² (2007). (the State Oceanic Administration, 2009) (Science 2009, 1014-1015) #### **POLICY** FORUM ECOLOGY #### Controlling Eutrophication: Nitrogen and Phosphorus Daniel J. Conley, ** Hans W. Paerl, * Robert W. Howarth, * Donald F. Boesch, * Sybil P. Seitzinger, * Karl E. Havens ** Christiane Lancelot. * Gene E. Likens** ## N deposition onto coastal seas of China # Total N deposition to Bohai Sea: 22 kg N ha⁻¹ yr⁻¹ # Annual N deposition in coastal zone: 34 kg N ha⁻¹ Assuming half of coastal N deposition rate (•17 kg N/ha) onto Bohai, Yellow, East China and South China Seas (3Î 106 km²), total N deposition amounts to 5 Tg N yr⁻¹ to the 4 marine ecosystems surrounding China. ## **Outlines** - Changes in nitrogen input and NUE - Efforts in improving NUE - Environmental impacts - Biodiversity loss - Soil acidification - Eutrophication - Air pollution # Beijing Smog 2014 #### Enhanced nitrogen deposition over China Xuejun Liu¹*, Ying Zhang¹*, Wenxuan Han¹, Aohan Tang¹, Jianlin Shen¹, Zhenling Cui¹, Peter Vitousek², Jan Willem Erisman^{3,4}, Keith Goulding⁵, Peter Christie^{1,6}, Andreas Fangmeier⁷ & Fusuo Zhang¹ 1980s: 13.2 kg N ha⁻¹ 2000s: 21.1 kg N ha⁻¹ Increase: • 8 kg N ha⁻¹ or 60% (Liu and Zhang et al., 2013. Nature 294: 259-262) ## High secondary aerosol contribution to particulate pollution during haze events in China Ru-Jin Huang^{1,2}*, Yanlin Zhang^{3,4}, Carlo Bozzerri¹, Kin-Fai Ho⁵, Jun-Ji Clao², Yongming Han², Kaspar R. Daellenbach¹, Iay G. Slowik¹, Stephen M. Pieber¹, Emily A. Bruns¹, Iay G. Slowik¹, Stephen M. Pieber¹, Emily A. Bruns¹, Monica Crippa¹†, Clancarlo Clarelli¹, Andrea Piazzalunga², Margit Schwikowski^{2,4}, Cülcin Abbaszade², Jürgen Schnelle-Kreis², Rail Zimmermann^{2,4}, Zhisheng An², Sönke Szidat², Urs Baltensperger³, Imad El Haddad² & André S. H. Prévôt³ **Chemical composition** and **source apportionment** of PM_{2.5} during the high pollution events of 5–25 January 2013 in Beijing, Shanghai, Guangzhou and Xi'An cities (Huang et al., 2014. Nature) #### A successful example at Urumqi: Shift of coal to natural gas for heating N dry deposition decreased from 26 kg N ha⁻¹ (2012) to 16 kg N ha⁻¹ (2015). ## Conclusions and outlook - Overall N input/output ratio is 43% currently, with an slight increasing trend in recent years; - Huge regional differences in the trend exist due to various agricultural structure and soil conditions; - Enhanced N cycling has impacted largely to both agricultural and natural ecosystems, including biodiversity loss, soil acidification, eutrophication, air pollution, etc.; - Knowledge based practices in improving N use are promising, although barriers still exist. #### Evidence for a Historic Change Occurring in China Xuejun Liu,**,† Peter Vitousek,‡ Yunhua Chang,§ Weifeng Zhang,† Pamela Matson, and Fusuo Zhang† China is now at a historic turning point to increase NUE and crop production meanwhile reducing its N environmental impact. (Liu et al., 2016. EST) # Thanks for your attention! ## Implementation # County Level Arable Land Resource Management Information System # Developed by Yangzhou Soil and Fertilizer Station # Overall effects of N practices # Nitrogen input to croplands