Nitrogen input to croplands and its environmental impacts in China

Xiaoyuan Yan

Institute of Soil Science
Chinese Academy of Sciences

Xuejun Liu

College of Res. & Env. Sci. China Agricultural University

- Spatial and temporal changes in N input and NUE
- Efforts in improving NUE
- Environmental impacts
 - Biodiversity loss
 - Soil acidification
 - Greenhouse gas balance
 - Eutrophication
 - Air pollution

- Spatial and temporal changes in N input and NUE
- Efforts in improving NUE
- Environmental impacts
 - Biodiversity loss
 - Soil acidification
 - Greenhouse gas balance
 - Eutrophication
 - Air pollution

Nitrogen input to croplands

Spatial and temporal variation of N input to croplands

Nitrogen use efficiency (NUE)

SOC and soil N content changes

National soil survey

Soil sampling campaign

C:+8.8%

N:+5.1%

Change in NUE with time

Environmental Kuznets Curve

Zhang et al., 2015, Nature 528, 51-59

Changes in NUE with economy growth

Heilongjiang and Inner Mongolia

Shanghai and Beijing

Urban area, economically developed, consistent low NUE

Zhejiang and Guangdong

Yunnan and Guizhou

Major agricultural region

High or middle level economy
Major agricultural provinces
Largely increased soil N
Increasing NUE

Courtesy of Huang Yao

- Spatial and temporal changes in N input and NUE
- Efforts in improving NUE
- Environmental impacts
 - Biodiversity loss
 - Soil acidification
 - Greenhouse gas balance
 - Eutrophication
 - Air pollution

Knowledge-based N practices

Enhanced efficiency N fertilizers

Controlled release N fertilizer
Nitrification inhibitor
Urease inhibitor

Optimized N application

Reducing basal fertilizer N ratio Increasing N splitting frequency Deep placement of fertilizer

Fertilizer recommendation based on soil test

Fertilization based on soil test program

An accumulative area of 100 million hector by 2015

Fertilizer recommendation systems

Computer access

Palm access

Touching panel

Effects on productivity and N loss

Loss indexes

Achieved on an average N reduction of 28%

Barriers

- Effects of these N practices varied among different crop species and soil properties.
- Many farms are still small scale, farmers' knowledge, environmental awareness still need to improve
- Opportunity cost (time, labor, training/education costs) for implementing
- Lack of mechanization

National geography, 2011

- Changes in nitrogen input and NUE
- Efforts in improving NUE
- Environmental impacts
 - Biodiversity loss
 - Soil acidification
 - Eutrophication
 - Air pollution

Significant increase in leaf N in natural vegetation (a) and N uptake in long-term unfertilized croplands (b) during 1980s and 2000s.

Foliar N concentration

1980s: 18.1±7.2 mg/g 2000s: 24.0±9.2 mg/g

Increase: 5.9 mg/g (+30%)

Crop N from zero-N plots

1980s: 71.1 kg N ha⁻¹ 2000s: 82.4 kg N ha⁻¹

Increase: 11.3 kg N ha⁻¹ (+15%)

These results suggest N enrichment in China's terrestrial ecosystems since 1980.

*, *** denote significant difference at 0.05, 0.001 level.

(Liu et al., 2013. Nature, 494:459-462)

- Changes in nitrogen input and NUE
- Efforts in improving NUE
- Environmental impacts
 - Biodiversity loss
 - Soil acidification
 - Eutrophication
 - Air pollution

Impact of N addition on grassland plant community

(Song et al, 2012. J. Arid Land)

Elevated N deposition (e.g. 30 kg N ha⁻¹) led to significant decline in forb species richness in temperate grassland (Duolun, IM)

Relationship between N addition rate and species richness

(Song et al, 2011, Biogeosciences)

Biodiversity loss and recovery under various N addition conditions

Relationship between N addition rate and species richness for grasses (a) and forbs (b) from 2005 to 2015.

(Hao et al., 2016. unpublished)

- Changes in nitrogen input and NUE
- Efforts in improving NUE
- Environmental impacts
 - Biodiversity loss
 - Soil acidification
 - Eutrophication
 - Air pollution

Significant Acidification in Major Chinese Croplands J. H. Guo, et al.

Science 327, 1008 (2010);

DOI: 10.1126/science.1182570

- Average pH decline was 0.5 units during 1980s and 2000s
- Soil pH decline: Cash crop systems > Cereal crop systems

Table 1. Topsoil pH changes in major Chinese croplands between the 1980s and 2000s. The soil groups are defined in (13). NS, not significant; pH range is an average (5 to 95 percentile).

Sail graup	1980s		2000s					
	Sample number	pH value	Cereal crop systems*			Cash crop systems†		
			Sample number	pH value	pH change	Sample number	pH value	pH change
I	301	5.37 (4.40–6.60)	505	5.14 (4.17 - 6.52)	-0.23‡	337	5.07 (3.93 -6 .44)	-0.30‡
ii [*]	1157	6.33 (5.00–8.04)	1101	6.20 (5.00–7.70)	-0.13‡	413	5.98 (4.58–7.49)	-0 .35‡
Ш	297	6.42 (4.50-8.30)	211	5.66 (4.27 - 8.06)	-0.76‡	98	5.62 (4.27 – 7.73)	-0.80‡
IV	562	6.32 (5.10-7.89)	5 <mark>3</mark> 7	6.00 (4.84-7.60)	-0.32‡	238	5.60 (4.07–7.42)	-0.72‡
٧	995	7.96 (6.39–8.80)	850	7.69 (5.37–8.70)	-0.27‡	520	7.38 (5.69 - 8.20)	-0.58‡
VI	493	8.16 (7.10-8.80)	250	8.16 (7.49–8.82)	-0.00 (ns)	10	8.17 (7.43–8.93)	0.01 (ns

^{*}Cereal/fiber crops (such as rice, wheat, maize, and cotton).

[†]High-input cash crops (such as vegetables, fruit trees, and tea).

H⁺ production budget of main factors in four typical Chinese cropping systems. W-M: Wheat—maize; R-W: Rice-wheat; R-R: Rice-rice; G-V: Greenhouse vegetables.

Changes of soil pH after 12-year fertilization in a wheat-maize cropping system (Annual N input 300 kg N/ha, Initial pH 5.7 in 1990)

Significant soil acidification across northern China's grasslands during 1980s-2000s

YUANHE YANG*†‡, CHENGJUN JI*, WENHONG MA§, SHIFENG WANG‡, SHAOPENG WANG*, WENXUAN HAN¶, ANWAR MOHAMMAT ||, DAVID ROBINSON‡ and PETE SMITH‡

Continuous N addition led to significant soil acidification and changes in microorganism communities

Contents lists available at Serumgebreat

Atmospheric Environment

journal homepage, www.elsevier.com/locate/atmoschiv

The contribution of atmospheric deposition and forest harvesting to forest soil acidification in China since 1980

Qichao Zhu ** 1, Wim De Vries 15 1, Xuejun Liu ** 2. Mufan Zeng **. Tianxiang Hao **, Enzai Du **, Fusuo Zhang **, Jianbo Shen **

(Zhu et al. 2016. AE)

- Changes in nitrogen input and NUE
- Efforts in improving NUE
- Environmental impacts
 - Biodiversity loss
 - Soil acidification
 - Eutrophication
 - Air pollution

网络首页 十今日中国 十中国数据 十选律选织 十公文公福 上助为互称 十戒角定误 二工作动态 十大事任免 二新闻发布

当就位置。 首庆为 今日中国为 中国原位

China's eutrophied lake area has increased from 135 (1970) to 8700 km² (2007).

(the State Oceanic Administration, 2009)

(Science 2009, 1014-1015)

POLICY FORUM

ECOLOGY

Controlling Eutrophication: Nitrogen and Phosphorus

Daniel J. Conley, ** Hans W. Paerl, * Robert W. Howarth, * Donald F. Boesch, * Sybil P. Seitzinger, *
Karl E. Havens ** Christiane Lancelot. * Gene E. Likens**

N deposition onto coastal seas of China

Total N deposition to Bohai Sea: 22 kg N ha⁻¹ yr⁻¹

Annual N deposition in coastal zone: 34 kg N ha⁻¹

Assuming half of coastal N deposition rate (•17 kg N/ha) onto Bohai, Yellow, East China and South China Seas (3Î 106 km²), total N deposition amounts to 5 Tg N yr⁻¹ to the 4 marine ecosystems surrounding China.

Outlines

- Changes in nitrogen input and NUE
- Efforts in improving NUE
- Environmental impacts
 - Biodiversity loss
 - Soil acidification
 - Eutrophication
 - Air pollution

Beijing Smog 2014

Enhanced nitrogen deposition over China

Xuejun Liu¹*, Ying Zhang¹*, Wenxuan Han¹, Aohan Tang¹, Jianlin Shen¹, Zhenling Cui¹, Peter Vitousek², Jan Willem Erisman^{3,4}, Keith Goulding⁵, Peter Christie^{1,6}, Andreas Fangmeier⁷ & Fusuo Zhang¹

1980s: 13.2 kg N ha⁻¹

2000s: 21.1 kg N ha⁻¹

Increase: • 8 kg N ha⁻¹ or 60%

(Liu and Zhang et al., 2013. Nature 294: 259-262)

High secondary aerosol contribution to particulate pollution during haze events in China

Ru-Jin Huang^{1,2}*, Yanlin Zhang^{3,4}, Carlo Bozzerri¹, Kin-Fai Ho⁵, Jun-Ji Clao², Yongming Han², Kaspar R. Daellenbach¹, Iay G. Slowik¹, Stephen M. Pieber¹, Emily A. Bruns¹, Iay G. Slowik¹, Stephen M. Pieber¹, Emily A. Bruns¹, Monica Crippa¹†, Clancarlo Clarelli¹, Andrea Piazzalunga², Margit Schwikowski^{2,4}, Cülcin Abbaszade², Jürgen Schnelle-Kreis², Rail Zimmermann^{2,4}, Zhisheng An², Sönke Szidat², Urs Baltensperger³, Imad El Haddad² & André S. H. Prévôt³

Chemical composition and **source apportionment** of PM_{2.5} during the high pollution events of 5–25 January 2013 in Beijing, Shanghai, Guangzhou and Xi'An cities

(Huang et al., 2014. Nature)

A successful example at Urumqi: Shift of coal to natural gas for heating

N dry deposition decreased from 26 kg N ha⁻¹ (2012) to 16 kg N ha⁻¹ (2015).

Conclusions and outlook

- Overall N input/output ratio is 43% currently, with an slight increasing trend in recent years;
- Huge regional differences in the trend exist due to various agricultural structure and soil conditions;
- Enhanced N cycling has impacted largely to both agricultural and natural ecosystems, including biodiversity loss, soil acidification, eutrophication, air pollution, etc.;
- Knowledge based practices in improving N use are promising, although barriers still exist.

Evidence for a Historic Change Occurring in China

Xuejun Liu,**,† Peter Vitousek,‡ Yunhua Chang,§ Weifeng Zhang,† Pamela Matson, and Fusuo Zhang†

China is now at a historic turning point to increase NUE and crop production meanwhile reducing its N environmental impact.

(Liu et al., 2016. EST)

Thanks for your attention!

Implementation

County Level Arable Land Resource Management Information System

Developed by Yangzhou Soil and Fertilizer Station

Overall effects of N practices

Nitrogen input to croplands

