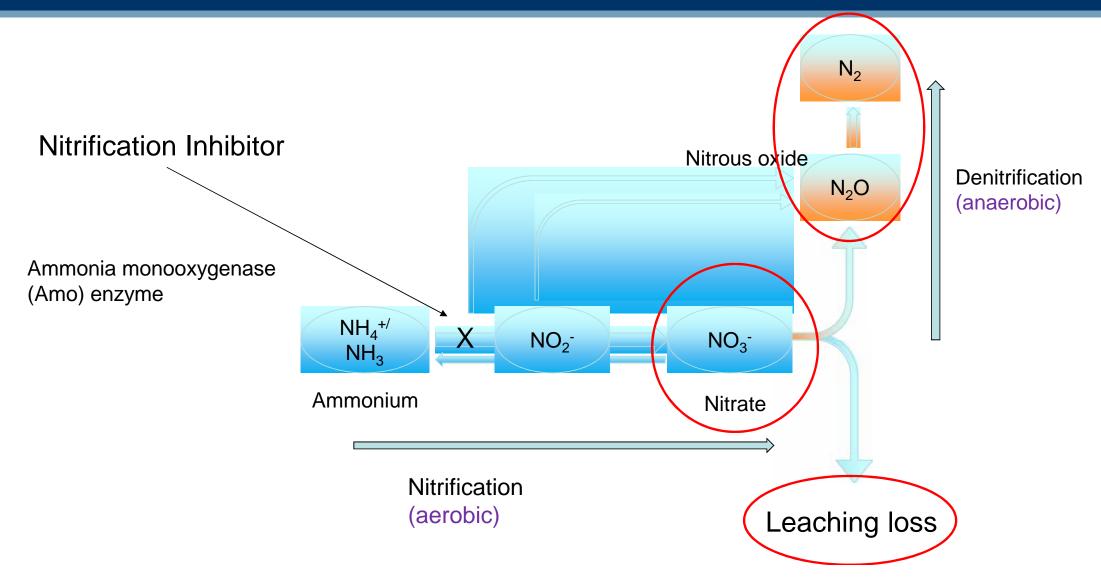


Understanding the variability in performance of the nitrification inhibitor 3,4-Dimethylpyrazole phosphate in Australian agricultural soils.

<u>Helen Suter</u>, Deli Chen (The University of Melbourne) Charlie Walker (Incitec Pivot Fertilisers)



Role of Nitrification Inhibitors

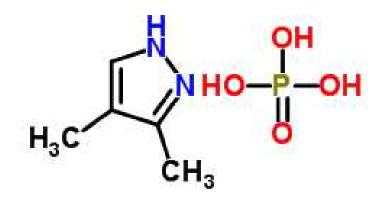


Background : Why Focus on Nitrification inhibitors?

contributor to N₂O

ightarrowReduce N₂O emissions

Reduce nitrate leaching


Improve nitrogen use efficiency

Background : Why Focus on 3,4-Dimethylpyrazole phosphate?

- Commercially available in Australia
- Potential for use across broad range of climates

3,4-Dimethylpyrazole phosphate

BUT

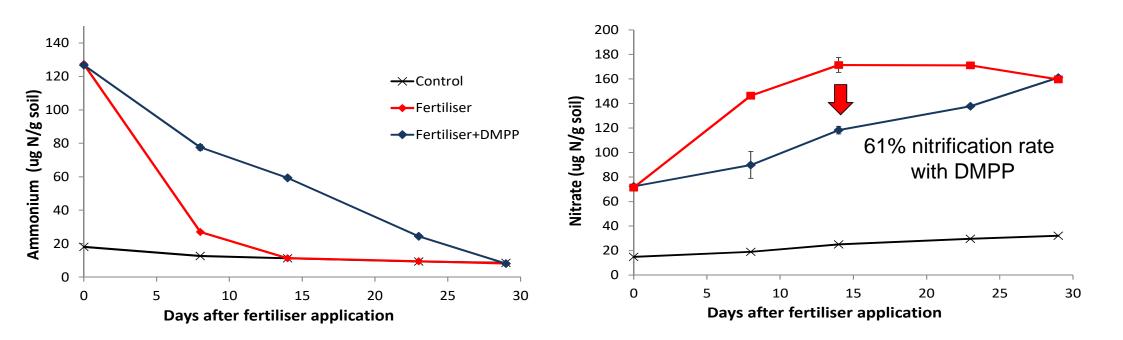
- Inconsistent results observed
- ➢ Reasons for this are unclear

How to address this? Experimental Methodology

- Laboratory Incubation experiment
- ➢ 30 soils, < 2 mm</p>
- ➤Treatments
 - Control (no N)
 - Fertiliser (NH₄+-N)
 - Fertiliser + DMPP

> 100 μ g NH₄⁺-N / g soil + 50 μ g NO₃⁻-N / g soil

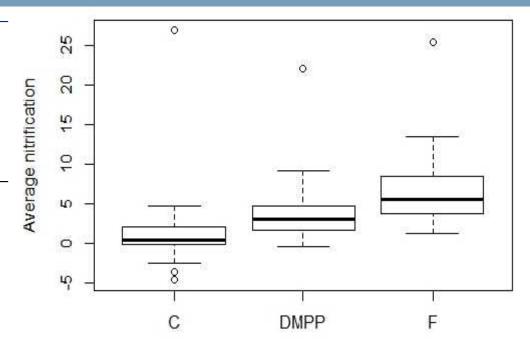
≥25°C, 60% WFPS, 28 days,


Mineral N (2 M KCl 1:5) and N₂O collected

Results : Nitrification rate

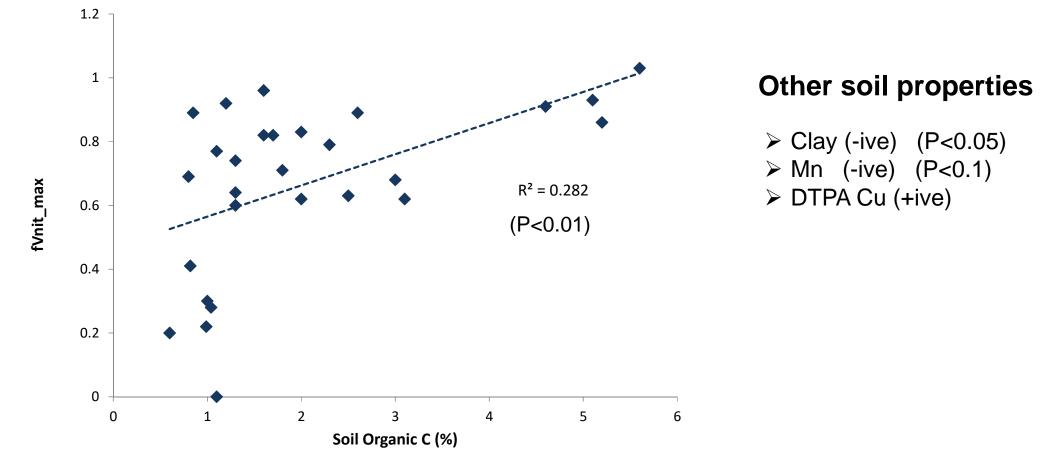
Example of mineral N dynamic

Horsham soil (cropping) : 23% clay, 34% silt, 44% sand, pHw 8.5, OC 0.82%, N 0.08%



Results : Nitrification rate

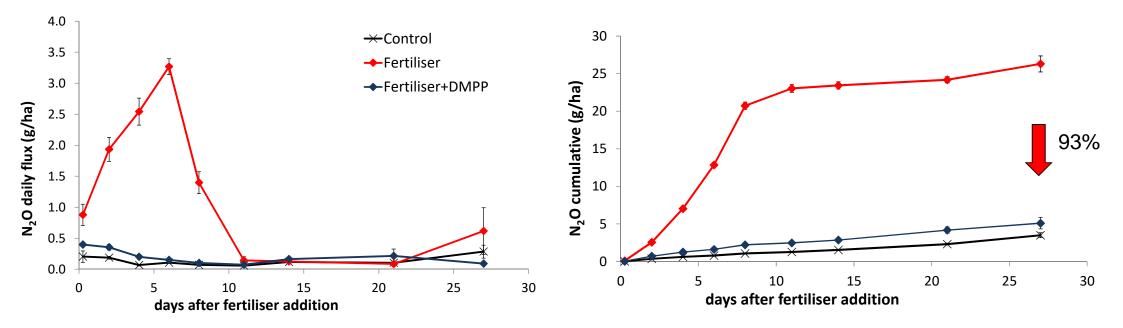
	Average nitrification rate (14 days) (μg NO ₃ -N produced/g soil/day)				
Treatment	Range	Average ± standard error			
Control	-4.61-26.89	1.37±0.99 ^a			
Fertiliser	1.33-25.45	6.47±0.93 ^b			
DMPP	-0.43-22.02	4.00±0.78 ^{ab}			


Average net-nitrification rate (14 days) $(\mu g NO_3 N \text{ produced/g soil/day})$

Fertiliser	-1.44-12.63	4.82±0.55 ^b	
DMPP	-4.86-8.02	2.39±0.45 ^a	

- Addition of fertiliser increases nitrification rate
- DMPP nitrification rate = control (no fertiliser)
- Average 38% reduction in fertiliser induced nitrification rate with DMPP (range 9-100%)

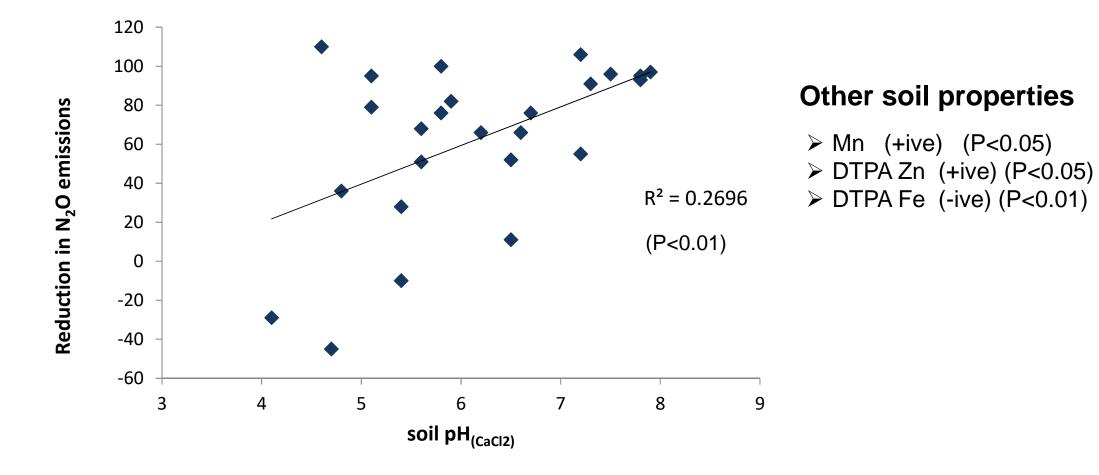
MELBOURNE Results : Soil properties and DMPP efficacy to reduce nitrification



fVnit_max: fraction of nitrification achieved with DMPP relative to the fertiliser only treatment

Results : N₂O emissions

Example of N₂O emission


Horsham soil (cropping) : 23% clay, 34% silt, 44% sand, pHw 8.5, OC 0.82%, N 0.08%

Results : N₂O emissions

		e N ₂ O emissions (2 μg N ₂ O-N/g soil)	8 days)		8.0 8.C		ç	ō
Treatment	range	Average ± standard error	Log ₁₀	 N2O-N/3 soil	 7 .	>	c	•
Control	0.01-1.1	0.06±0.30	-1.20±0.64 ^a	- Z Sh	20	5		
Fertiliser	0.07-7.74	0.62±0.28	-0.59±0.45 ^b		U			
DMPP	0.01-6.96	0.49±0.26	-0.92±0.64 ^{ab}		0.0	i c	DMPP	F
• Addition of fertiliser increases N ₂ O emissions (28 days)								
(μg N ₂ O-N/g soil)				• DMPP nitrification rate = control (no fertiliser)				
Fertiliser	-0.10-9.54	0.71±0.39	-0.57±0.48 ^a		•	 Average 55% reduction in fertiliser induced N₂O emissions with DMPP (range 0-100%) 		
DMPP	-0.01-10.75	5 0.52±0.35	-1.17±0.78 ^b					

MELBOURNE Results : Soil properties and DMPP efficacy in reducing N₂O emissions

- Effective tool for reducing nitrification and N₂O emissions across Australian agricultural soils
- High range of responses
- >OM significantly (P<0.01) affected the DMPP inhibition of nitrification
- \geq pH significantly (P<0.01) affected the DMPP inhibition of N₂O emissions
- Further investigation of the importance of properties other than organic matter and pH, and the role of soil trace elements and metals for their interactions with the inhibitor.
- \geq The significant of the soil microbial community requires investigation
 - e.g. Bacterial versus archaeal responses

Thankyou

helencs@unimelb.edu.au

