

Nitrogen cycling enhanced by conservation agriculture in a rice-based cropping system of the Eastern Indo-Gangetic Plain

Md Ariful Islam

Richard W Bell, Chris Johansen, M. Jahiruddin

Australian Centre for International Agricultural Research

Conventional rice-based cropping systems in Eastern Indo-Gangetic Plain

- 2-3 crops per year
 - Puddling and ponded soil for rice crop
 - Residue burnt/removed
 - Intensive tillage for dryland crop

Conservation agriculture

Conservation agriculture

Leaching

Clay particles

Change in N forms

Research question

How does N cycle change in short-medium term with minimum soil disturbance and increased crop residue retention in a rice-based cropping system

How it was tested?

- Crop rotation Lentil-mungbean-rice
- Variety BARI Masur 6-BARI Mungbean 6-BINA Dhan 7
- Duration 2.6 years (7 crops grown sequentially)

How it was done?

Soil disturbance

Strip-planting (SP)

Bed planting (BP)

Conventional tillage (CT)

Residue levels

High residue (HR)

Low residue (LR)

Strip Planting Strips 5-7 cm wide and 7 cm deep

Strips 5-7 cm wide and 7 cm deep

Total N input and uptake (7 crops)

Residue levels

Soil N-stock

at 0-15 cm

Initial N-stocks-1787 kg N ha-1

Residue levels

Estimated N Balance (Final N stock and total inputs – Initial N-stocks and total outputs)

Total soil N (%)

Soil disturbance effects

Total soil N (%)

Residue effects

Potentially Mineralizable N (at 60 DAS during Crop 7)

0-7.5 cm (Surface soil) PMN (mg N/kg) 7.5-15 cm (Sub-surface soil) 0-15 cm (Whole plough layer) LR HR **Residue treatment**

Yield and leaf N of Crop 7

Key Findings

Strip planting and HR increased the total soil N, N-stocks , N

accumulation rate, plant N, and crop yield

- > High residue retention produced a positive N balance
- > Labile N PMN and TSN increased in SP and HR

Implications

> Increase in soil N pool may decrease N requirements overtime

in SP and HR

> Continue to study effect of soil disturbance and residue on N

dynamics in this legume-dominant and in cereal dominant rice-

based systems of Bangladesh

Acknowledgements

Dr Wendy Vance

- **Australian Centre for International Agricultural**
- Research (Projects LWR/2005/001; 2010/080)
- **Bangladesh Agricultural Research Institute**
- Field staff-Abdul Kuddus Gazi and Md Neaz Mehedi

Questions

Mineral N (at 60 DAS during Crop 7)

Annual N accumulation rate at 0-15 cm

