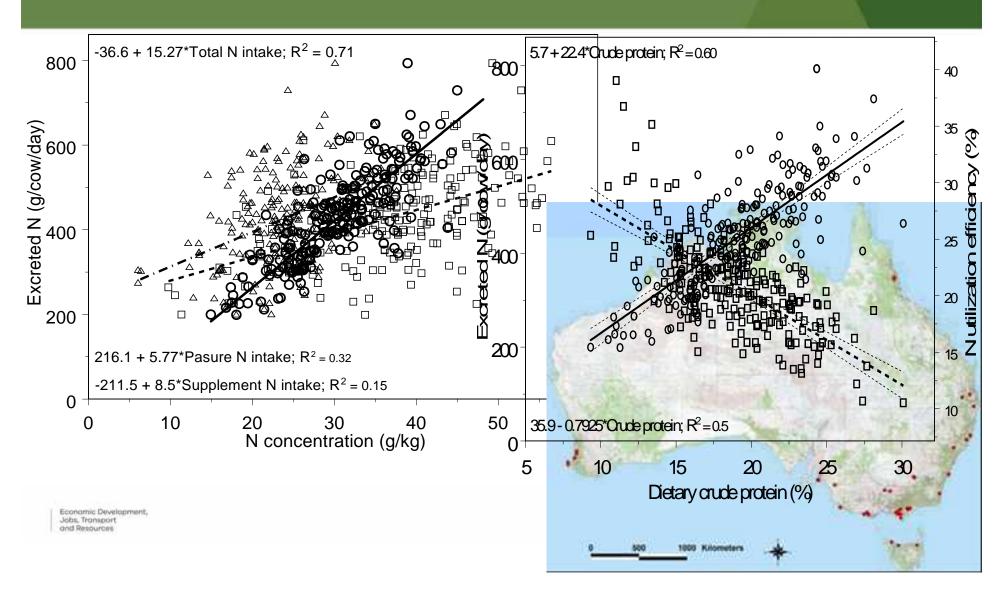


Sharon Aarons, Cameron Gourley, Mark Powell


Agriculture Victoria, Department of Economic Development, Jobs, Transport and Resources

**Agriculture Research Services, US Department of Agriculture** 

Economic Development, Jobs, Transport and Resources

- Large N surpluses have been reported for dairy production systems worldwide
- Reduction in N excretion by animals on commercial farms
  - observed relationship between N surplus and N in animal manure
- Prediction equations for N excretion
  - ➤ assist with the development of nutrient and manure management plans for confinement based systems (e.g. Nennich et al. 2005; Knowlton et al. 2010; Jonker et al. 1999; Nousiainen et al. 2004)
- Compare prediction equations for grazing systems with international equations
  AGRICULTURE VICTORIA

> data collected from Australian grazing system farms



| Regression equations R <sup>2</sup> |         |                        |                                       |     | Source         | Source               |  |
|-------------------------------------|---------|------------------------|---------------------------------------|-----|----------------|----------------------|--|
| N excretion (g/cow/day)             |         |                        |                                       |     |                |                      |  |
|                                     | $N_i$   |                        | = 0 55Int + 13 (helow 100 a/c/d) 0 78 |     |                | Castillo et al 2000  |  |
|                                     | N,      | Reg                    | ression equations                     |     | R <sup>2</sup> | Source               |  |
|                                     | M       | M N use efficiency (%) |                                       |     |                |                      |  |
|                                     | N,      |                        | $N_{mi} = -0.0002Int + 0.36$          |     | 0.21           | Castillo et al. 2000 |  |
|                                     | M<br>Ex |                        | Milk N/N intake = $-0.672$ CPc +      | 350 | 0.13           | Yan et al. 2006      |  |
|                                     |         |                        | $NUE = -0.009376N_{ln} + 25.9$        |     | 0.08           | This study           |  |
|                                     |         |                        | NUE = -0.7925CP + 35.8792             |     | 0.5            | This study           |  |

- Relationships similar to confinement/research
- > Relationships not as strong
  - Due to variation in grazing systems



