

Defoliation severity during late autumn on herbage production, regrowth and N uptake of diverse pastures

GS Cun*, GR Edwards, RH Bryant grace.cun@lincolnuni.ac.nz

Introduction

 Winter pasture management has a significant impact on the early spring feed supply and pasture growth

- strategies to increase herbage DM production

- Nitrate leaching losses often high in the autumn/winter
- Herbs such have been suggested as a tool to reduce nitrate leaching losses
- Pastures which grow rapidly after defoliation may have greater potential to increase N uptake during the late autumn period
 New Zealand's specialist land-based university

Determine the effect of five post grazing heights on herbage production, regrowth and N uptake of a diverse pasture mixture during the late autumn and winter season

Materials and Methods

- May-September 2015 at the Lincoln University Research Dairy Farm (LURDF) in Canterbury, New Zealand
- Site established Oct 2013-drilled with diverse pasture species following cultivation
- April 2015-plots grazed by cows to a compressed height of 35 mm
 25 kg N/ha as urea
- Four blocks of five plots (2x4 m) defoliated by a push mower in May to five heights (20, 30, 40, 50, 60 mm) in a RBD

Sowing rate and cultivar

Species	Common name	Cultivar	Sowing Rate (kg/ha)		
Lolium perenne	Perennial ryegrass	Arrow AR1	12.0		
Trifolium repens	White clover	Weka	3.0		
Medicago sativa	Lucerne	Torlesse	8.0		
Cichorium intybus	Chicory	Choice	1.5		
Plantago lanceolata	Plantain	Tonic	1.5		

Herbage sampling and measurements

Regrowth

-0, 22, 41, 64, 90 and 112 days after defoliation treatments

-3 quadrats (0.2 m²)/plot to ground level

-dried, weighed, grind and analysed for N%

Final herbage yield harvested at 35 mm

-subsample for DM content and N% by NIRS

-herbage yield (kg DM/ha) = (fresh weight x DM%)/area

N uptake

-herbage yield x herbage N%

Weather Data

	Regrowth period						
	Days	Days	Days	Days	Days		
	0-22 ^a	22-41	41-64	64-90	90-112		
Maximum air temperature (°C)	14.1	12.3	11.7	12.6	11.8		
Minimum air temperature (°C)	2.6	1.6	1.1	1.7	3.1		
Radiation (MJ/m ²)	5.6	4.9	5.2	7.0	7.6		
Soil temperature at 100 mm (°C)	5.9	4.3	3.3	4.2	5.8		
Total rainfall (mm)	17.6	55.2	25.6	36.2	15.2		
^a Regrowth beginning May 14, 201	5						

Herbage mass during regrowth of pastures initially defoliated to treatment heights

Botanical composition (%)

Defoliation height	Perennial ryegrass	White clover	Lucerne	Chicory	Plantain	Dead	Weeds
20 mm	63.2	4.7 ^a	0.2	3.5	19.4	6.6ª	2.4
30 mm	66.0	5.5 ^a	0.0	0.8	14.5	12.4 ^b	0.8
40 mm	55.9	13.3 ^b	0.2	2.2	13.8	14.1 ^b	0.5
50 mm	51.3	7.6 ^{ab}	1.4	5.5	13.0	19.8 ^c	1.5
60 mm	50.9	4.5ª	0.0	1.5	22.6	16.8 ^{bc}	3.7
P-value	0.18	0.03	0.29	0.16	0.71	<.001	0.46
LSD	15.39	6.06	1.45	4.08	16.02	5.49	3.83

Nitrogen % above ground level on initial day

Nitrogen % above ground level

*

New Zealand's specialist land-based university

*

Nitrogen uptake (kg N/ha) on final day

Conclusions

- Grazing severely to post grazing heights <40 mm may improve growth and N uptake in the late autumn/winter period in diverse pastures
- Consequently minimize nitrate leaching losses with no apparent detrimental effects on herbage DM yield/ha in spring

Acknowledgements

This research was completed as part of the Forages for Reduced Nitrate Leaching programme with principal funding from the New Zealand Ministry of Business, Innovation and Employment

The programme is a partnership between DairyNZ, AgResearch, Plant & Food Research, Lincoln University, the Foundation for Arable Research and Landcare Research