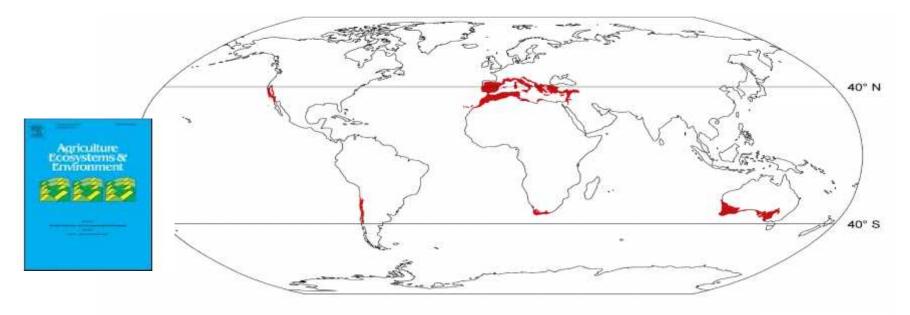
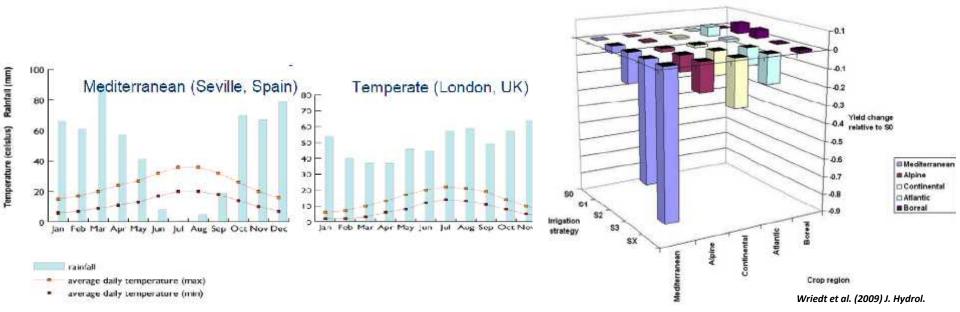
Strategies for greenhouse gas emissions mitigation in Mediterranean agriculture: A review

A. Sanz-Cobena, *L. Lassaletta, E. Aguilera, A. del Prado, J. Garnier, G. Billen, A. Iglesias, B. Sánchez, G. Guardia, D. Abalos, D. Plaza-Bonilla, I. Puigdueta-Bartolomé, R. Moral, E. Galán, H. Arriaga, P. Merino, J. Infante-Amate, A. Meijide, G. Pardo, J. Álvaro-Fuentes, C. Gilsanz, D. Báez, J. Doltra, S. González-Ubierna, M.L. Cayuela, S. Menéndez, E. Díaz-Pinés, J. Le-Noë, M. Quemada, F. Estellés, S. Calvet, H.J.M. van Grinsven, H. Westhoek, M.J. Sanz, B.S. Gimeno, A. Vallejo, P. Smith


Universidad Politécnica de Madrid Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas

AGEE Special Issue on GHG mitigation in Mediterranean cropping systems



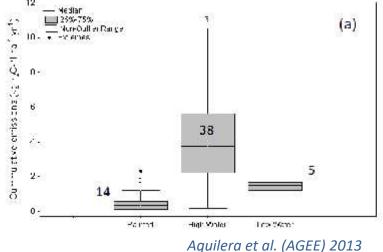
Special Issue: "Mitigation and Quantification of GHG in Mediterranean cropping systems" Eds. Alberto Sanz-Cobena, Luis Lassaletta, Josette Garnier and Pete Smith. Eds.

Agriculture, Ecosystems & Environment (Dec. 2016)

14 international contributions

Mediterranean climate & agriculture

- Temporal gap between maximum irradiance and temperature (early summer) and maximum water availability (winter).
- Low organic matter content of most cropped soils


Low productivity of agricultural soils

Effect on N emission processes

Irrigated vs rainfed systems

- Irrigation: key factor affecting soil microbial processes leading to GHG & reactive N emissions (e.g. NO_x).
- Main processes: nitrification & nitrifier denitrification (Aguilera et al., 2013; AGEE)
- Irrigation system highly impacts on N₂O & NO_x emissions (Aguilera et al., 2013; AGEE)
- $N_2O EFs \le IPCC$ (10 times lower in rainfed).

 Impact on C footprint of Mediterranean agricultural goods (Cayuela et al., 2016; AGEE) <u>Presented on Thursday by L. Lassaletta</u>

Data & information collection

Based on:

- Expert judgement (Mediterranean & temperate)
- Scientific literature review

1. Agronomic mitigation measures

- N₂O Potential of mitigation
- SOC -• side effects
- CH₄ barriers & opportunities for implementation
- 2. Structural mitigation options
 - Changes in diet
 - Food waste

Information on:

Direct GHG Mitigation options

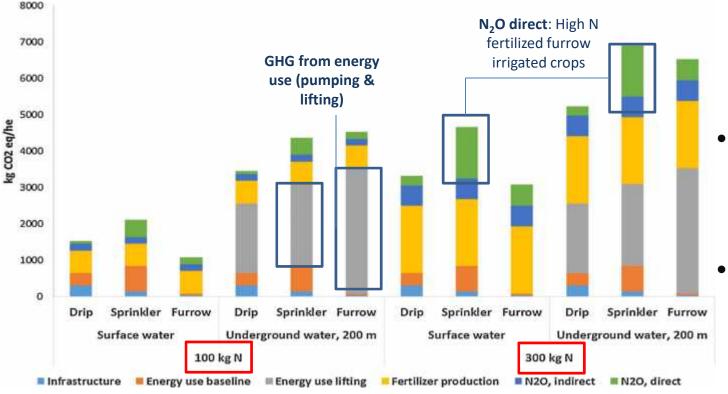
Agronomic mitigation measures

Group of measures	Mitigation measure	Direct CHG abated	% of mitigation	Potential cost (2)	Potential benefit (2)	Potential positive and negative side-effects (3)				
						-		Other pollutant on farm		
						GHC mitigation out farm	GIIG increase outside the farm	Reduced pollutant	Increased pollutant	Crop yield change on farm
Agronomic measure				1.000						
Optimal	Adjust N fertilization	N ₂ 0	40-50	**	*****	Indicerr N ₂ O		NO3- NH		No effect
fentlization	to crop needs							100 -		
	Fertigation	N ₂ O	20 50			Indirect N ₂ O	1.11	NO ₅ -		Increase
	Substitute synthetic fertilizers by manures	N-0	20-50			Indirect NoO. CO2	CH2	P. NO ₈ , C sequestration	NHs. heavy metals	No effect
Manures and slurnes	Injection of slutries	C seq.	0-10	****		Indirect N ₂ O		NH ₃	NO_5^\perp,CH_4	Decrease
	Immediate incorporation of manures after application	C seq./N ₂ C	0-10			Indirect N ₂ O		NII	NO3 ⁻ , CI ¹ 4	Increase
Inhibitors	Use of nitrification inhibitors	N ₂ 0	±0⊢50		***	Indirect N ₂ O	C0, ^c	NO, NO _a -	NIL	Increase ^a
	Use of urease inhibitors	N ₂ O	30-60	****	***	Indirect N2O	C02 ^e	NO, NH ₃		Increase
Crop Rotations and cover crops	Cover crops	C seq,	0 10	**	•••	CO ₂ ^c /Indirect N ₃ O		NH _s , NO _s -, P		Variable
	Crop Rotations	C seq.	24		***	CO2'		8	2	Increase
Intgation	Improved Intgation technology	N20/CH4 ⁶	50-70			Inducts N20		NO3	ND, CH4 [®]	Increase
Soil til age	Low/no tillage	C seq.	-	-		CO2 ^c		NO3, NH3	NzO	Increase
Grop residues and agro industry	Crop residues mulching	C sey,	50-70	÷.		CO2"		NH ₃		Long-term increase
by-products	Crop residues	L seq.	50-70	3 4		LUST		NH ₃	LH	Long-terr

- N management

 (adjusted N fertilization; substitution of synthetic fertilizers by solid manures)
- Water management (drip irrigation)
- NI and U inhibitors
- Crop rotations and CCS
- Reduced soil tillage
- Management of crop residues and by-

products


By cropping system: rainfed & irrigated systems

Crop type	Main component of radiative forcing		Main mitigation practice		Other pollutants	
	Rain-fed	Irrigated	Rain-fed	Irrigated	Rain-fed	Irrigated
Herbaceous	Machinery/ external inputs; C seq. (NT)	N ₂ O	Reducing fuel consumption and external inputs, reduced tillage crop rotations (including legumes), adjusted N rates, Nis	Water management (e.g. drip irrigation), N fertilization (e.g. adjusted N rates, Nis)	Increased NH ₃	Increased NH ₃ , NO ₃
Fruit orchards	C sequestration	N ₂ O	NĂ	Cover crops, pruning crop	NA	NA
Rice	NA	CH4	NA	Water management, straw management mitigation strategies	NA	Increased N ₂ O

- N₂O as main contributor to total GHG budget in irrigated systems. Agronomic practices with more potential (water and N fertilizer management).
- Indirect GHG emissions more important over the total balance in rainfed. Management practices both in the production system & upstream.

Beyond the plot: Enlarging the scope/boundaries of the cropping systems (LCA)

Case study:

 Effect of water availability (energy for pumping groundwater).

N fertilizer use. High N: GHG from fertilizer production

Drip irrigation only effective in a energy costly scenario

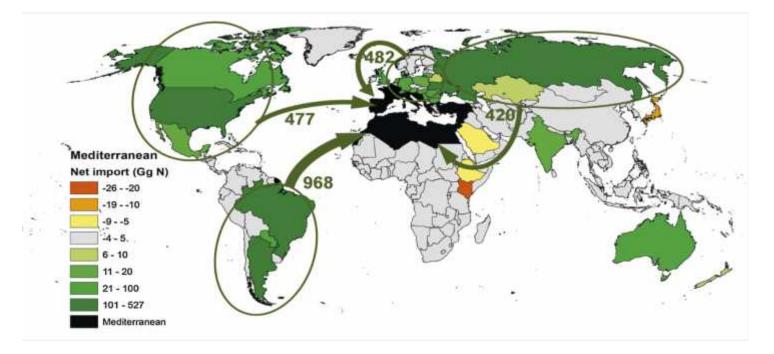
Barriers for implementation

Agronomic Measures	Ove-rall	Constraints					
	(1)	Technical	Economic	Social (2)	Envirunmental (3)		
Adjust N fertilization to crop needs	Low	Soil analysis needed to adjust dosage. Need to know adjusted crop requirements	Potential increase in labor costs (e.g. split application) and soil analysis	Perception of decreased productivity	NA.		
synthetic a fertilizers n by manures N and slurnes e in		Need to know adjusted crop requirements Need of adequate equipment (for incorporation of slurries)	Transport and application costs New equipment	Legal restrictions (EII Nitrates Directive 91/676/ EEC) – (i.e., use, management, treatment and transportation) Bad smells Only applicable to areas with mixed farming systems Perception of decreased productivity	Potential pollution and health issues		
Fertigation & improved irrigation technology	iproved associated with investm igation conversion		Initial expensive investment costs	Not for all crops	Potential accumulation of heavy metals in crops (i.e., rice)		
Nitrification & Urease inhib.	High	NA.	Increase of fertilization costs	Not widely spread among neighboring tarmers	NA.		
Biochar	Low	Lack of experiments at local conditions	Expensive product (2\$ per kilo)	Lack of knowledge on how to produce it on-site; Lack of regulations	N.A.		
Composted	High	Access/availability	Transport and	Specific knowledge required	Pollution issues.		

<u>Technical</u>:

- N adjustments. Soil analysis
- Improved irrigation: new infrastructure.

Economic:


- N adjustments. Labor costs. Nis (high costs).
- Improved irrigation: Initial investment.

Social:

 N adjustments. Social perceptions. Legal restrictions.

Structural measures

- Decrease animal protein consumption (move to Mediterranean diet: 40% total protein).
- Reduce food waste (c. 33%).

Conclusions

- N₂O emissions of Mediterranean cropping systems are generally lower than those observed in temperate ones, though the potential for mitigation is high.
- Variable climatic conditions are common in Mediterranean areas. This affects not only N₂O emission processes but the effectiveness of mitigation strategies (e.g. nitrification inhibitors).
- **Optimized N fertilization** and **irrigation** show a large potential for N₂O mitigation.
- Organic fertilization suitable alternative for reducing GHG emissions without yield penalties in irrigated systems.
- Measures designed to increase **C sequestration** through judicious management of exogenous or endogenous C sources: high mitigation potential in Mediterranean cropping systems (permanent crops). Irrigated annual crops are at risk of losing SOC if they are not adequately managed.
- **CH**₄ fluxes from paddies are controlled by management of the water table and organic inputs.
- Implementation will require effective regional and international policies, closer collaboration between scientists, stakeholders and farmers, and enhanced public awareness and engagement.

Strategies for greenhouse gas emissions mitigation in Mediterranean agriculture: A review

A. Sanz-Cobena^{a,*}, L. Lassaletta^b, E. Aguilera^c, A. del Prado^d, J. Garniere^f, G. Billen^{e,f},
A. Iglesias^a, B. Sánchez^a, G. Guardia^a, D. Abalos^g, D. Plaza-Bonilla^h,
I. Puigdueta-Bartolomé^a, R. Moralⁱ, E. Galán^d, H. Arriaga^j, P. Merino^j, J. Infante-Amate^c,
A. Meijide^k, G. Pardo^d, J. Álvaro-Fuentes¹, C. Gilsanz^m, D. Báez^m, J. Doltraⁿ,
S. González-Ubierna^o, M.L. Cayuela^p, S. Menéndez^q, E. Díaz-Pinés^r, J. Le-Noë^f,
M. Quemada^d, F. Estellés^s, S. Calvet^s, H.J.M. van Grinsven^b, H. Westhoek^b, M.J. Sanz^d,
B.S. Gimeno^t, A. Vallejo^a, P. Smith^u

Thanks for your attention