

Building critical SOC concentration as a major pathway for improving nutrient use efficiency in sub-Saharan Africa

<u>By</u>

Patrick Musinguzi¹ & Peter Ebanyat^{1,2}

¹Makerere University ^{1,2}International Institute for Tropical Agriculture Kampala, Uganda <u>musipato@yahoo.com</u>

7th International Nitrogen Conference, Melbourne, Australia 2016

OUTLINE

✓ Background

✓ Problem

✓ Objectives

✓ Materials and methods


✓ Results

✓ Conclusion and recommendations

✓ Acknowledgement

7th International Nitrogen Conference, Melborne, Australia, 2016

Background

- ✓ High cost of N fertilizers and low N use efficiency key challenges to yield
- ✓ Nutrient recovery efficiencies do not exceed 50%
- ✓ Measures that may result in increased nutrient use efficiency (NUE) a must
- One potential parameter that can guide N application is SOC
- It is a good indicator of soil fertility and critical SOC range for high NUE is important 7th International Nitrogen Conference, Melbourne, Australia 2016

Background cont'd

- **Building SOC to critical** levels is envisaged to
- ✓ Boost NUE

- 10-

NP.K.

- ✓ Restore soil fertility and enhance crop productivity
- ✓ Increase C sequestration for climate benefits
- \checkmark Enhance soil health and boost income security

 \checkmark

Background cont'd

Efforts in tropical soils have already attempted to establish critical SO (Musinguzi et al., 2016)

The critical SOC range is between <u>1.92-2.204%</u> for a Ferralsol for maize

Expl Agric: page 1 of 19 @ Cambridge University Press 2016 doi:10.1017/S0014479715000307

CRITICAL SOIL ORGANIC CARBON RANGE FOR OPTIMAL CROP RESPONSE TO MINERAL FERTILISER NITROGEN ON A FERRALSOL

By PATRICK MUSINGUZI | ¶, PETER EBANYAT | ↓, JOHN STEPHEN TENYWA†, TWAHA ALI BASAMBA†, MOSES MAKOOMA TENYWA† and DRAKE N. MUBIRU§

†Department of Agricultural Production, Makerere University, P.O. Box 7062, Kampala, Uganda, †IITA-Uganda, Plot 1.5 Naguru Fast Road, P.O Box 7878, Kampala, Uganda and §National Agricultural Research Laboratories, Kawanda, P.O Box 7064, Kampala, Uganda

(Accepted 3 December 2015)

SUMMARY

Soil Organic Carbon (SOC) is a major indicator of soil fertility in the tropics and underlies variability in corp response to mineral fertilizers. Critical SOC commentations that interact positively with N fertilizer for optimal crop yield are less understood. A study was conducted on a Ferralsol in sub-humid Uganda to explore the critical range of SOC concentrations and associated fractions for optimal maize (2 m mayr L) yield response to applied mineral N fertiliser. Maize grain yield response to N rates applied at 0, 25, 50 and 100 kg N la⁻¹ in 30 fields of low fertility (SOC $\leq 1.2\%$), mediam fertility (SOC = 1.2-1.7%) and high ferrility (SOC $\geq 1.7\%$) was assessed. Soil was physically fractionated into sand-sized (63–2000 µm), silt-sized (2–63 µm) and clay-sized (<2 µm) particles and SOC content determined. Low fertility fields (<1.2% SOC) resulted in the lowest response to N application. Fields with >1.2% SOC registered the linguist agronomic efficiency (AE) and grain yield. Non-linear regression models predicted critical SOC is 1.2% and grain yield. Non-linear regression models predicted critical SOC is 1.2% and grain yield. Non-linear regression models predicted critical SOC is 1.2%.

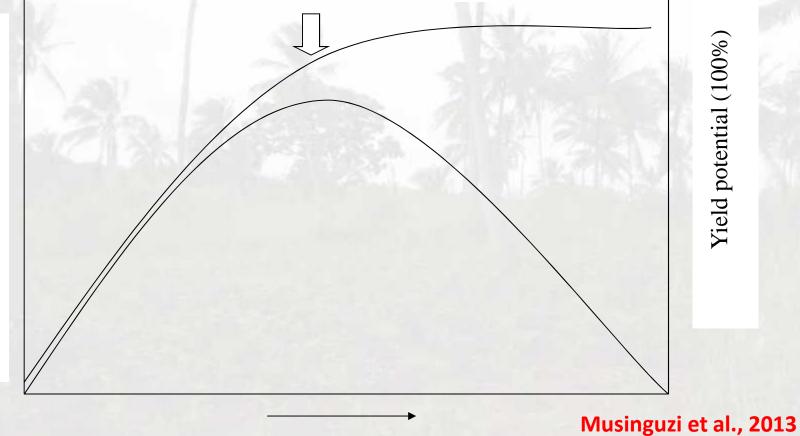
7th International Nitrogen Conference, Melbourne, Australia 2016

5

The Problem

- However, it remains unknown on how SOC can be built to critical levels
- Some research have attempted to study organic materials and explore the critical SOC
 - The potential of available tropical materials to restore SOC has had less attention
- This work explored the potential of available materials for SOC
 restoration

Photo credits: by Vanlauwe 6


Recovery efficiency (N) (kg/kg)

Yield potential (100%)

Hypothetic critical SOC for high NUE

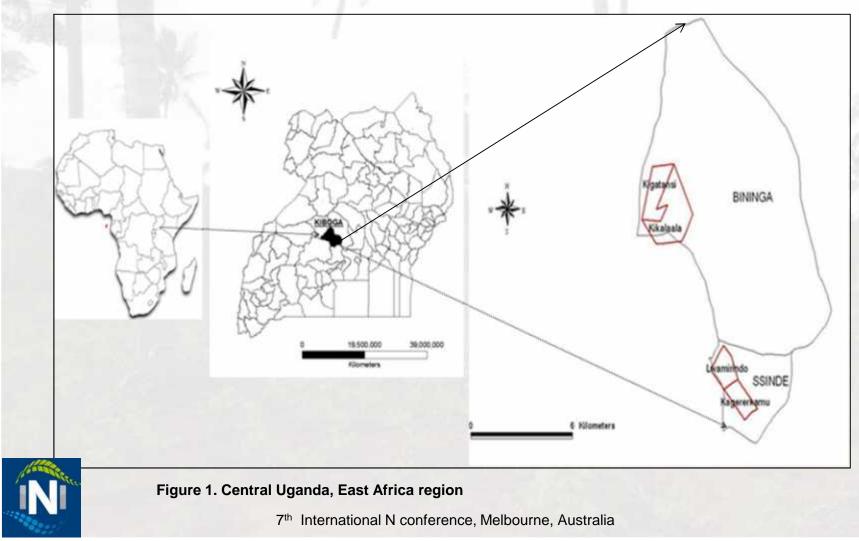
Fields experiencing highest AE (single added N amount)

SOC variations due to management (per soil type)

7th International Nitrogen Conference, Melbourne, Australia 2016

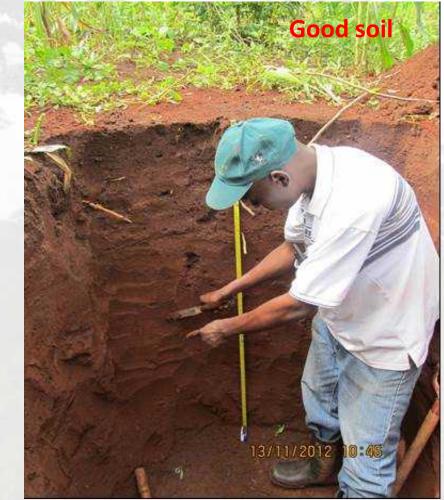
Research Objective

To explore the potential of tropical organic inputs for SOC restoration of SSA soils


7th International Nitrogen Conference, Melbourne, Australia 2016

Materials and methods

Study sites for critical SOC building approaches Action sites-Tropical soils of Uganda, East Africa


Copacity Building in Agriculture

Materials and methods (contd)

✓ Typical Ferralitic soils of different SOC (low SOC and high SOC)

7th International Nitrogen Conference, Melbourne, Australia 2016

Materials and methods (cont'd)

виналя SOC approach

- ✓ SOC building based on theoretical model projections
- ✓ Applied the elemental C for materials to estimate SOC restoration capacity
- ✓ The exponential model decay constant
 (k) (day⁻¹) applied for selected materials
- ✓ The half-life was used as a reference for accumulative application of organic materials

Frequency of organic material addition
 depended on half-life, quality (other factors constant)

7th International Nitrogen Conference, Melbourne, 2016

Sesbania Sesban

compost

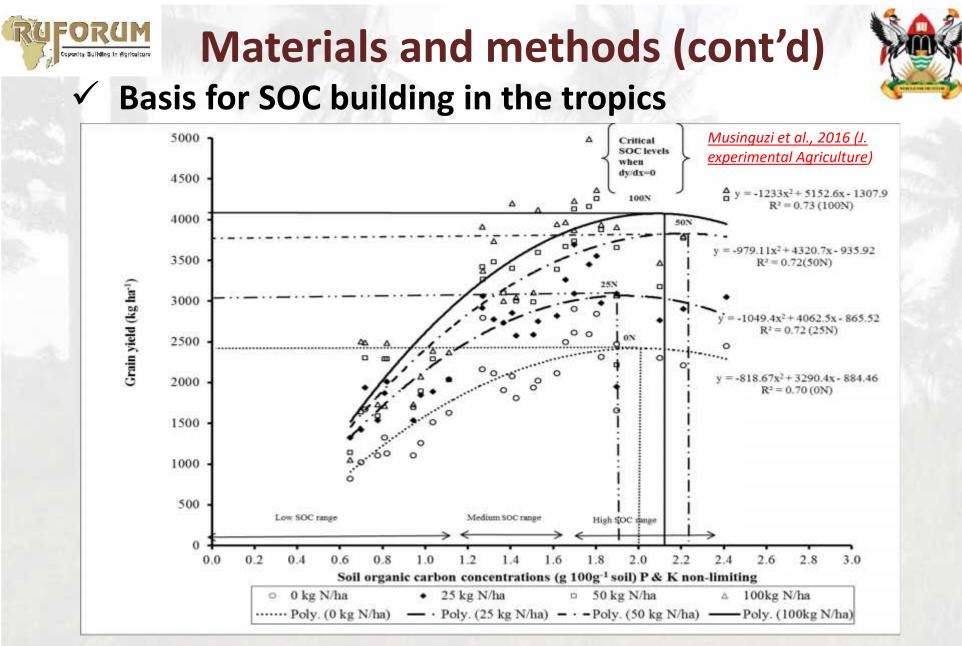
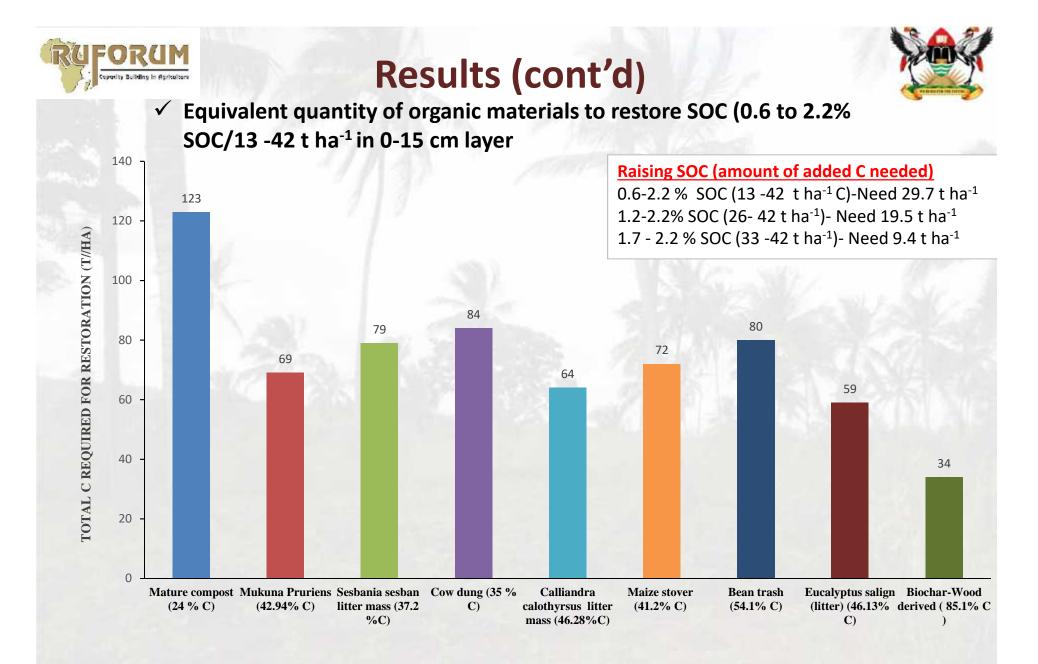
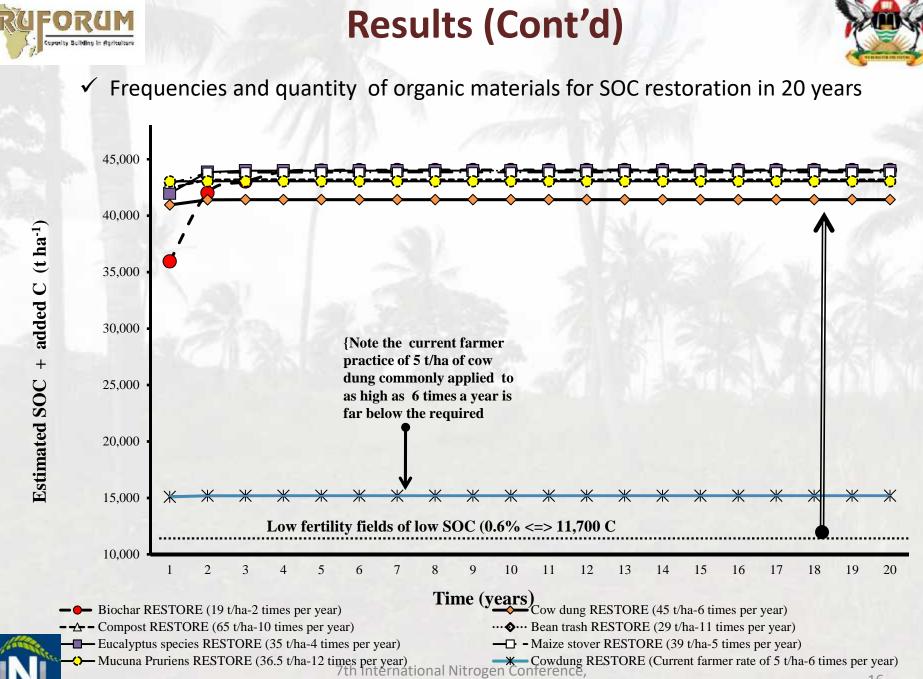


Figure 2. Non-linear model fitting of maize grain yield response to added nitrogen fertilizer under soils of different SOC ranges in a Ferralsol in Uga



1

Results



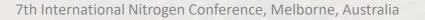
1 .								COMMENTATION
	Selected organic material (% C content; References)			Resource quality classes by Palm et al., 2001	Exponential model decay constant (k) day ⁻¹	Estimated half life	Frequency and quantities required for restoration	
		<0.6% to 2.2%SOC	1.2% to 2.2% SOC	1.7% to 2.2% SOC				
1	Mature compost (24 % C, Kimani & Lekasi et al., 2004)		81.6 - 39.3	39.3	Class I (High N, low lignin and PP*)	0.019	36	65 t ha ⁻¹ (applied 10 times)
2	Mukuna Pruriens (42.94% C Dauda et al., 2006)	69.2-45.6	45.6-21.9	22	Class I (High N, low lignin and PP*)	0.023	30	36.5 t ha ⁻¹ (12 times applied
3	Cow dung (35 % C, Lekasi et al., 2001)	84.90 - 56	55.93-27	27	Class II (High N, high lignin, low PP)	0.011	63	
4	Sesbania sesban litter (37.2% C Palm et al., 2001)	79.9-52.6	52.6-25.4	25.4	Quality class I (High N, low lignin and PP*)	0.042	17	-
5	Calliandra calothyrsus litter mass (46.28% Palm et al., 2001)	64.2-42.3	42.3-20.3	20.3	Class II (High N, high PP*, low lignin)	0.012	58	-
6	Maize stover (41.2% C Palm et al., 2001)	72.1-47.5	47.5-22.9	22.9	Class III (Low N, low lignin)	0.0093	75	39t ha ⁻¹ (5 times a year)
7	Bean trash (54.1% C, TSBF database, 1997)	79.9-52.6	52.6-25.4	25.4	Not classified	0.021	33	29 t ha ⁻¹ (11 times)
8	Eucalyptus salign (litter) (46.13% C, Palm et al., 2001	59.5-39.2	39.2-18.9	18.9	Class IV (Low N, high lignin)	0.0072	96	35 t ha ⁻¹ (4 times ayear)
J	Biochar-Wood derived (85.1% C)	34.9-23	23-11	11	Not classified	0.004	173	19 t ha ⁻¹ (applied 2

DIFFERENT ORGANIC MATERIALS & C CONCENTRATION

7th International Nitrogen Conference, Melbourne 2016

Melbourne 2016

Conclusion and recommendations



Conclusion

- Organic materials have to be applied continuously in reasonable quantities to register unit changes in SOC
- ✓ Applications as high as 10 to 12 times in a year for compost, bean-trash and mucuna pruriens, and as low as 2 times for biochar needed to raise SOC from 0.6 to 2.2%
- ✓ Building SOC is a major pathway for improving NUE in the tropical soils

Recommendations

- Engaging different stakeholders such as researchers, policy makers and farmers to improve material availability, material quality and use
- ✓ Long-term research studies needed to validate the theoretical underpinnings demonstrated in this work
- Economic implications need to be considered so as to make sound judgment for future use in SOC restoration efforts

Acknowledgement

Supervisors

Farmers

- ✓ INI 2016 organizing committee
- ✓ World Phosphate Institute
- ✓ IWMNet Project-EU funded
- ✓ Carnegie small grant support
- ✓ Makerere University

Regional Universities Forum for Capacity Building in Agriculture

