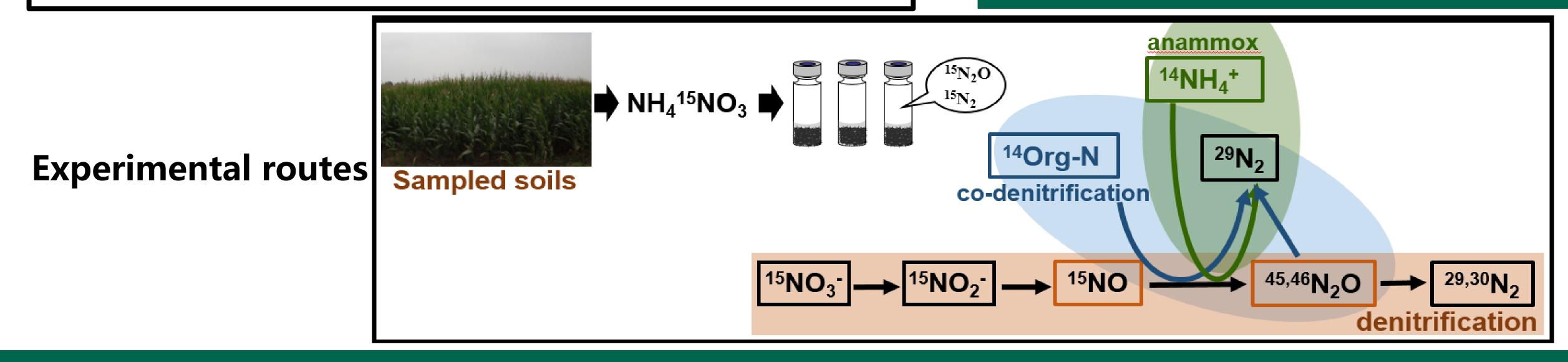
Pervasive control of soil pH on N_2O and N_2 emissions under anaerobic conditions from upland agricultural soils across China

Feifei Zhu¹, Yunting Fang¹*, Limei Zhang², Rong Sheng³, Wenxue Wei³, Jizheng He^{2,4}

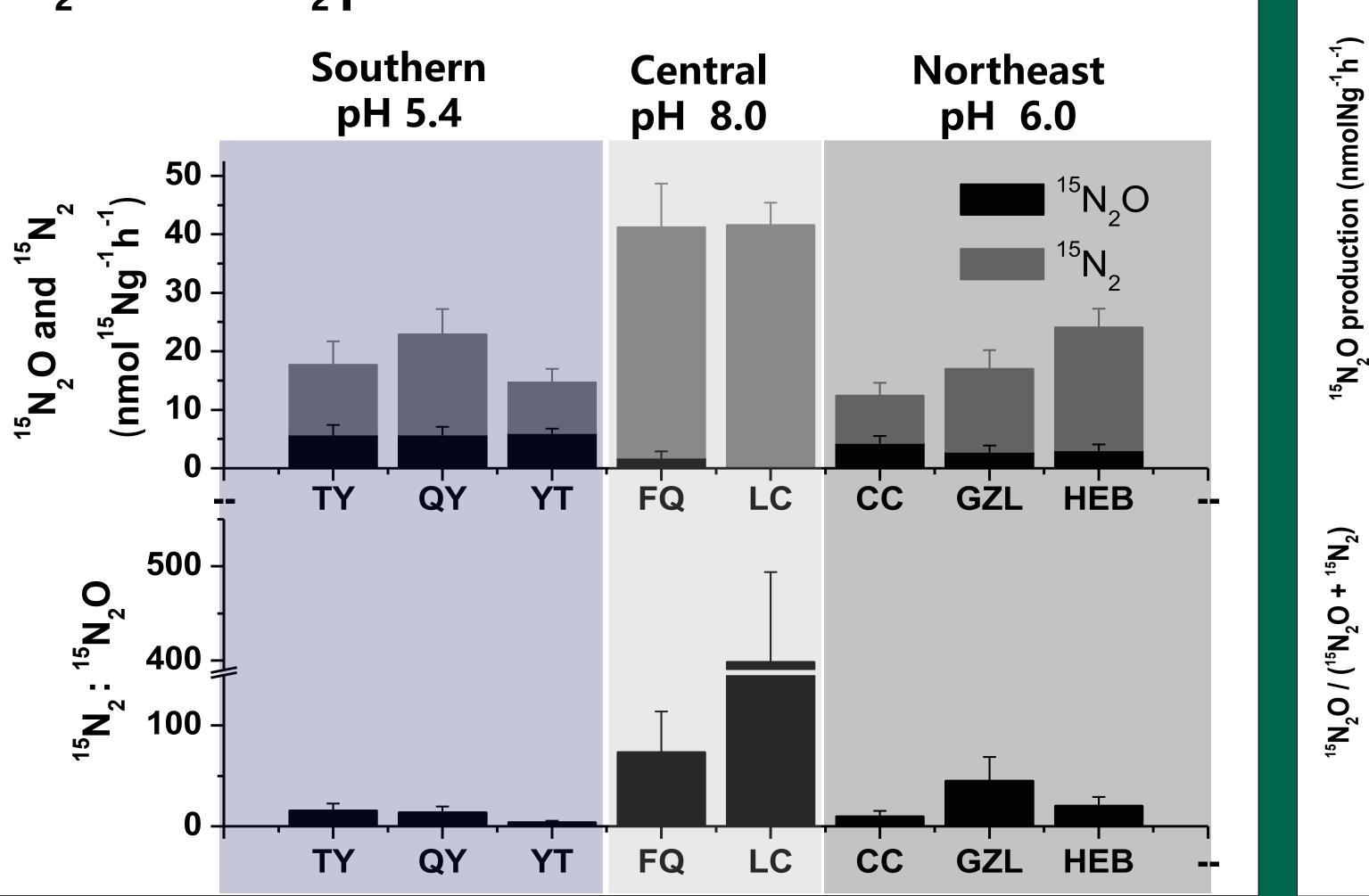
¹Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China ²State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China

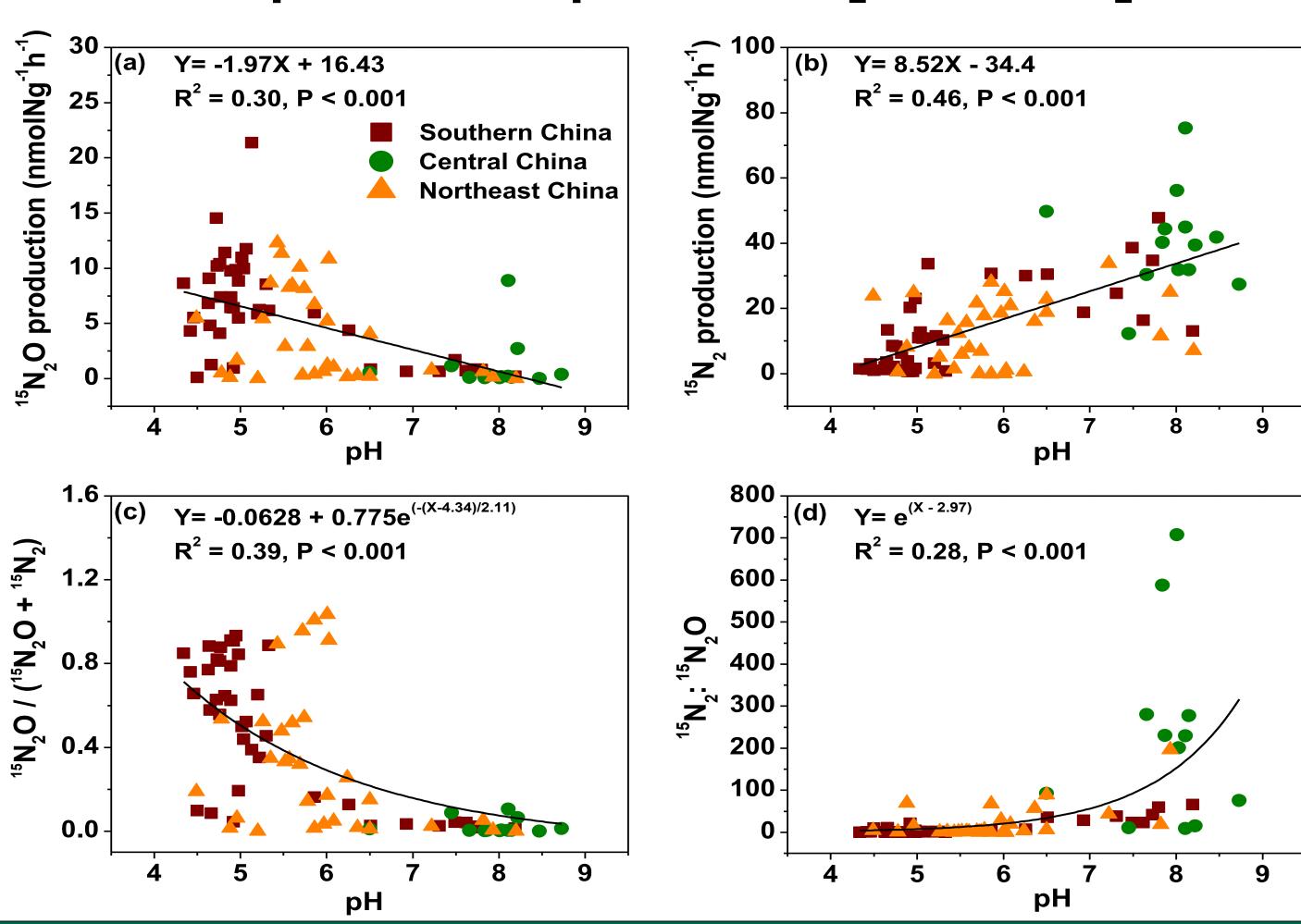
³Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China


⁴Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia

Background

- Soil N₂ emission is an important pathway of N losses, which is difficult to quantify in terms of both the magnitude and the contributions of the processes involved in, yielding uncertainty in closing the N budget for agricultural systems;
- Soil pH might be the most important factor influencing both denitrification and N₂O production, but it remains largely unclear if soil $\bar{p}H$ regulate the $N_2O/(N_2O + N_2)$ ratio in natural soil pH gradients over relatively large regional scales;


Objectives


- •We investigate the influence of environmental factors, especially pH on N₂O and N₂ production, as well as on the $N_2O/(N_2O+N_2)$ ratios in eight areas from three representative agricultural regions across China (northeast, central and southern China);
- We also partitioned the sources of N_2O and N_2 to denitrification or co-denitrification plus anammox based on the different ¹⁵N isotope pairing between these processes;
- We know rather little on the contributions of denitrification, co-denitrification to N_2O production, and denitrification, co-denitrification plus anaerobic ammonium oxidation (anammox) to N_2 productions.
- The overall objective was to improve our understanding of potential N gas losses (N_2O+N_2) except NO and NH₃), $N_2O/(N_2O+N_2)$ ratios, controlling factors, and responsible processes (denitrification vs. co-denitrification plus anammox) from major Chinese upland agricultural soils.

¹⁵N₂O and ¹⁵N₂ productions

Relationships between pH and ¹⁵N₂O and ¹⁵N₂

 \Box N₂ was the dominant end production of denitrification under anaerobic conditions;

- \Box As soil pH increased, N₂O production decreased, N₂ production increased;

\square N₂ productions were high at soils with high pH; \square N₂: N₂O ratios ranged from 4 to 372.

 \Box N₂O production was high at low pH soils, suggesting possible N_2O reduction inhibition;

Contributions of denitrification and co-denitrification to N ₂ O and N ₂ productions									
Areas .	¹⁵ NO₃ ⁻ fraction₊ (<i>Fn</i> , %)₊	$N_2O_{e^2}$				$N_{2^{e^2}}$			
		Rate (nmol N g ⁻¹ h ⁻¹),		Contribution (%).		Rate (nmol N g ⁻¹ h ⁻¹).		Contribution (%).	
		Denitrification.	Co-denitrificati on₀	Denitrification₀	Co-denitrificati on₀	Denitrification.	C+A,	Denitrification₽	C+A.
TY	97.6±0.3₊	6.5±1.8+	0.07±0.04 _*	99.0±0.5 ab _*	1.0±0.5 b ₄	12.4±4.2 b₊	0.43±0.15.	81.9±6.4 ab₀	18.1±6.4 ab _∛
QY₊	97.7±0.1₊	6.4±1.5+	0.17±0.03+	95.7±1.1 ab _*	4.3±1.1 b _*	18.0±4.6 b₊	0.07±0.03~	97.6±1.2 a _*	2.4±1.2 b₊
YΤ _e	97.8±0.1₽	6.7±0.9	0.15±0.02*	97.7±0.2 ab _*	2.3±0.2 b _e	9.2±2.4 b _e	0.11±0.04.	93.6±3.1 ab₀	6.4±3.1 ab₀
FQ	97.7±0.0₊	2.0±1.3+	0.05±0.02 _*	92.1±2.2 ab₊	7.9±2.2 ab _e	41.5±7.9 a₽	0.00±0.00	100.0±0.0 a _*	0.0±0.0 b.
\mathbf{LC}_{v}	97.9±0.1₄	0.1±0.0.	0.02±0.01+	85.2±1.6 b₊	14.8±1.6 a.	43.6±3.9 a₽	0.00±0.00	100.0±0.0 a.	0.0±0.0 b.
CC	92.8±2.6₽	6.3±2.1+	0.13±0.08 _*	94.1±3.1 ab₊	5.9±3.1 ab _e	8.6±2.4 b _e	0.55±0.31+	65.3±10.8 b₊	34.7±10.8 a.
GZL₽	92.4±5.5₽	3.0±1.2+2	0.41±0.27₽	89.3±4.0 ab₊	10.6±4.1 ab₂	14.9±3.4 b₊	0.18±0.12÷	92.7±6.6 ab₊	7.3±6.6 ab₊

Denitrification was the dominant process producing both N₂O and N_2 ; Denitrification contributed

to 85~99% of N₂O, and

productions, as compared

with co-denitrification (plus

 $65 \sim 100\% \text{ of } N_2$

anammox for N_2).