Linkage of N,O emission to functional gene abundance in an intensively managed
calcareous flu-aquic soill
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Introduction: N,O is a powerful long-lived greenhouse gas and has 300-times stronger warming effect than carbon dioxide in the troposphere

on a 100-yr time horizon’; It comes from both natural and anthropogenic sources and agricultural soils with nitrogen fertilizers or/and manure
are mainly anthropogenic sources which contributed up to 66% of current anthropogenic N,O emissions at global scale 2%; Large amounts of N fertilizer
and irrigation lead to substantial total N,O emissions in North China Plain, which has become a ‘hotspot’ of national N,O emissions with global
significances. A better understanding of the processes, mechanisms and factors controlling N,O production and emission is a prerequisite for managing
agricultural N,O emissions.

Scientific Questions: How does the abundance of amoA gene of bacteria response to short-term fertilization? What's the linkage
between annual N,O emission and abundance of functional genes including amoA of bacteria, narG, nirS, nirK, nosZ and 16S rRNA gene? How

does long-term nitrogen and carbon management affect this linkage?
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genes (nirS) and (nirK )and the N,O reductase gene (nosZ) of different
treatments in 0-20cm soil depth in sampling dates in 2013. Different letters
indicate significantldifference (P < 0.05) among treatments.
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Fig. 1. N,O fluxes on the sampling dates in 2013 (a); N,O data from the study year in the 2012-2013 winter wheat-
summer maize rotation (b); and N,O emission factor (c). Different letters indicate significant difference (P < 0.05)
between pairs of treatments.

proximal drivers in this intensively managed
calcareous fluvo-aquic soil. These findings will help to
draw the pertinence measures for mitigating N,O
emissions in this ‘hotspot’ region.
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