Linkage of N₂O emission to functional gene abundance in an intensively managed calcareous flu-aquic soil

Liuqing Yang^{1, 2}, Xiaotang Ju^{1*}, Xiaojun Zhang^{2*}

¹ China Agricultural University, No.2 Yuanmingyuan Xilu, Haidian District, Beijing, China, 100193, yangliuqing.1224@163.com

²Shanghai Jiao Tong University, No.800 Dongchuan Road, Minhang District, Shanghai, China, 200240.

*Author for correspondence: juxt@cau.edu.cn, xjzhang68@sjtu.edu.cn

Introduction: N₂O is a powerful long-lived greenhouse gas and has **300-times** stronger warming effect than carbon dioxide in the troposphere on a 100-yr time horizon¹; It comes from **both natural and anthropogenic sources** and **agricultural soils with nitrogen fertilizers or/and manure** are mainly anthropogenic sources which contributed **up to 66%** of current anthropogenic N₂O emissions at global scale ²; Large amounts of N fertilizer and irrigation lead to substantial total N₂O emissions in North China Plain, which has become **a 'hotspot' of national N₂O emissions** with global significance³. A better understanding of the processes, mechanisms and factors controlling N₂O production and emission is a prerequisite for managing agricultural N₂O emissions.

Scientific Questions: How does the **abundance** of *amoA* gene of bacteria response to short-term fertilization? What's **the linkage between annual N₂O emission and abundance of functional genes** including *amoA* of bacteria, *narG*, *nirS*, *nirK*, *nosZ* and 16S rRNA gene? How does long-term nitrogen and carbon management **affect this linkage**?

Methods

Treatment code	Nitrogen and straw management								
	Zero N application,								
$\mathbf{N_0}$	wheat and maize straw removal								
	Improved N _{min} test,								
N _{opt}	wheat and maize straw removal								
	Improved N _{min} test,								
CN _{opt}	wheat straw mulching and maize straw								
	return								
	Cattle manure with chemical fertilizer N								
	based on N balance calculation,								
CM	wheat straw mulching and maize straw								
	return								

Results

Table 1. Spearman's rank correlation matrix of annual N_2O emission, some soil properties, abundances of functional genes and 16S rRNA gene

N_2O^a	1	1.00										
TN^b	2	0.76**	1.00									
TOCc	3	0.66*	0.84**	1.00								
PNR ^d	4	0.53	0.52	0.60*	1.00							
PDNR ^e	5	0.83**	0.76*	0.81**	0.75**	1.00						
amoA	6	0.71*	0.34	0.53	0.73**	0.72**	1.00					
narG	7	0.74**	0.79**	0.78**	0.69*	0.90**	0.61*	1.00				
nirS	8	0.70**	0.82**	0.75**	0.71*	0.83**	0.59*	0.92**	1.00			
nirK	9	0.71**	0.69*	0.84**	0.75**	0.93**	0.77**	0.93**	0.85**	1.00		
nosZ	10	0.72**	0.59*	0.71**	0.75**	0.90**	0.82**	0.92**	0.85**	0.97**	1.00	
16S rRNA	11	0.78**	0.78**	0.80**	0.71**	0.93**	0.68*	0.98**	0.92**	0.96**	0.95**	1.00
		1	2	3	4	5	6	7	8	9	10	11

- *p<0.05; **p<0.01; ^aAnnual N_2 O emission in 2012-2013 winter wheat-summer maize rotation
- ^bTotal nitrogen concentration in the soil; ^cTotal organic carbon
- ^dPotential nitrification rate; ^ePotential denitrification rate

Fig. 1. N_2O fluxes on the sampling dates in 2013 (a); N_2O data from the study year in the 2012-2013 winter wheat-summer maize rotation (b); and N_2O emission factor (c). Different letters indicate significant difference (P < 0.05) between pairs of treatments.

Fig. 2. Gene copies of 16S rRNA (a) and ammonia monooxygenase gene (amoA) of bacteria (AOB) (b) of different treatments in 0-20cm soil depth in sampling dates in 2013. Different letters indicate significant difference (P < 0.05) among treatments

Fig. 3 Gene copies of the nitrate reductase gene (narG), nitrite reductase genes (nirS) and (nirK) and the N_2O reductase gene (nosZ) of different treatments in 0-20cm soil depth in sampling dates in 2013. Different letters indicate significantldifference (P < 0.05) among treatments.

Conclusion

Our study highlights the linkage of instant high N_2O emission peaks with the abundance of the bacterial amoA gene for nitrification and of annual N_2O emissions and small N_2O pulse after rainfall or irrigation with the abundance of denitrification genes, providing insight into the mechanism of N_2O production and the factors controlled by distal and proximal drivers in this intensively managed calcareous fluvo-aquic soil. These findings will help to draw the pertinence measures for mitigating N_2O emissions in this 'hotspot' region.

References

1 Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D.W., Haywood, J., Lean, J., Lowe, D.C., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schulz, M., Van Dorland, R. 2007. Changes in atmospheric constituents and in radiative forcing. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L. (Eds.), Climate change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United kindom and New York, NY, USA

2 UNEP 2013. Drawing Down N₂O to Protect Climate and the Ozone Layer. A UNEP (United Nations Environment Programme) Synyhesis Report. Nairobi, Kenya. 3 Zhou, F., Shang, Z.Y., Ciais, P., Tao, S., Piao, S.L., Raymond, P., He, C.F., Li, B.G., Wang, R., Wang, X.H., Peng, S.S., Zeng, Z.Z., Chen, H., Ying, N., Hou, X.H., Xu, P., 2014. A new high-resolution N2O emission inventory for China in 2008. Environmental Science and Technology 48, 8538-8547.

Acknowledgements: This work was funded by the National Natural Science Foundation of China (41230856, 41471190, 41301237) and the Newton Fund (Grant Ref. BB/N013484/1)