

Effect of rice husk biochar on nitrous oxide emission from decomposing hairy vetch in two soils under high-soil moisture condition Yoshitaka Uchida¹, Moe Shimotsuma²

¹ Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan / ²Graduate School of Agriculture, Hokkaido University www.uchidalab.com / uchiday@chem.agr.hokudai.ac.jp

NTRODUCTION

- Use of green manure legume + no-till farming approach is known as a good method to provide nitrogen (N) to soils in organic farming systems.
- For example, a legume plant <u>hairy vetch (Vicia villosa)</u> can be planted in early spring before tomato plants are sown thus the tomatoes can utilize hairy vetch derived-N.
- However, the use of hairy vetch-N by the following crop is often not efficient when compared to chemical fertilizer-N and the <u>improvement of the N use</u> <u>efficiency of green manure legume + no-till systems</u> is critically needed.
- Rice husk charcoal (biochar) has traditionally been used as a soil conditioner made from an agricultural waste, in Japan.
- We tested whether the use of rice husk charcoal changes <u>N cycle</u> in soils during the decomposition of surface applied hairy vetch.
- Two contrasting but common Japanese soils
 (Andosol (upland soil from a soybean field)
 and Fluvisol (lowland soil from a rice
 paddy)) were used and we performed an
 incubation experiment under <u>high-</u>
 moisture condition to observe the activities
 of <u>N-loss processes</u> such as denitrification.

Hairy vetch

Rice husk charcoal

METHODS

Soils

• Two major soil types, <u>Andosol</u> (volcanic ash soil) and <u>Fluvisol</u> (gray lowland soil) were used. Total carbon (%), total N(%) and pH of Andosol and Fluvisol were 3.13 and 1.73, 0.26 and 0.15, and 5.9 and 6.3, respectively.

Treatments

- The soils (100 g dry weight) were packed into PVC pipe cores and received one of four treatments. The core diameter was 5.5 cm. Soil height was approximately 5 cm.
 - 1. Without hairy vetch without charcoal (HV- B-)
 - 2. Without hairy vetch with charcoal (HV- B+)
 - 3. With hairy vetch without charcoal (HV+ B-)
 - 4. With hairy vetch with charcoal (HV+ B+)
- Hairy vetch application rates were <u>0.8 kg hairy vetch m⁻² soil surface</u>. It was grown under ¹⁵N fertilizer so <u>the hairy vetch was ¹⁵N-labelled (0.49 atom% ¹⁵N)</u>. Charcoal application rates were <u>2.1 kg charcoal m⁻² soil surface</u> (charcoal was mixed into the soils). Temperature = 25°C. Soil moisture was maintained at <u>~100% WFPS</u>. They were incubated for 45 d.

Left: Prepared soil cores with and without hairy vetch and charcoal.

Right: Incubation method to measure gas emission.

Inorganic-N, gas (N_2O and N_2) and isotope ratio ($^{15}N_2O$) measurements

- Soils were destructively extracted with KCl and measured colorimetrically for $NH_{\underline{4}}^{+}-N$ and $NO_{\underline{3}}^{-}-N$. The inorganic-N was measured for 0-1 cm (top layer) and 1-5 cm (bottom layer). The data for the top layer was shown in this poster.
- Nitrous oxide (N_2O) gas emissions were measured every 2–3 d and measured with a gas chromatography with an electron capture detector. Each core was incubated in a bottle for 30 min and N_2O gas concentration changes were measured to calculate the flux. For ${}^{15}N_2O$ measurements, isotope ratio mass spectrometer (Delta V, Thermo Electron Corporation) was used.
- N₂ emissions were measured approximately weekly by an acetylene block method.

RESULTS & DISCUSSIONS

- Hairy vetch treatment significantly increased NH₄⁺-N. Charcoal (+B) decreased NH₄⁺-N and increased NO₃⁻-N in Andosol. For NO₃⁻-N, similar trend was observed for Fluvisol but in smaller scale. The effect of charcoal on Fluvisol NH₄⁺-N was unclear.
- With the same amount of legume-N being applied, the accumulation of inorganic-N in soils markedly differed in the two soils.
- Rice husk charcoal might have slowed down the <u>mineralization of hairy vetch-N</u> (organic N \rightarrow NH₄⁺-N) and/or speeded up the <u>nitrification processes</u> (NH₄⁺-N \rightarrow NO₃⁻-N) in Andosol. More microbial analyses for their activities may be needed.

(a) Andosol, Top, NH,* (a) Andosol, Top, NH,* (b) Andosol, Top, NO3 (c) Fluvisol, Top, NH,* (c) Fluvisol, Top, NH,* (d) Fluvisol, Top, NH,* (e) Fluvisol, Top, NH,* (f) Fluvisol, Top, NH,* (g) Fluvisol, Top, NH,* (h) Andosol, Top, NO3 (h) Ando

Fig. Time course of NH₄⁺-N and NO₃⁻-N in Andosol (a, b) and Fluvisol (c, d) during the incubation with/without hairy vetch (HV) and with/without rice husk charcoal (B).

- For N₂O emissions, their patterns were different between +charcoal and –charcoal. However, the cumulative N₂O emissions were not different when + and charcoals were compared.
- $^{15}N_2O$ data might have suggested that relatively more N_2O-N was derived from the hairy vetch in +charcoal treatment. Also, higher complete denitrification $(N_2O \rightarrow N_2)$ was occurring in -charcoal treatment.

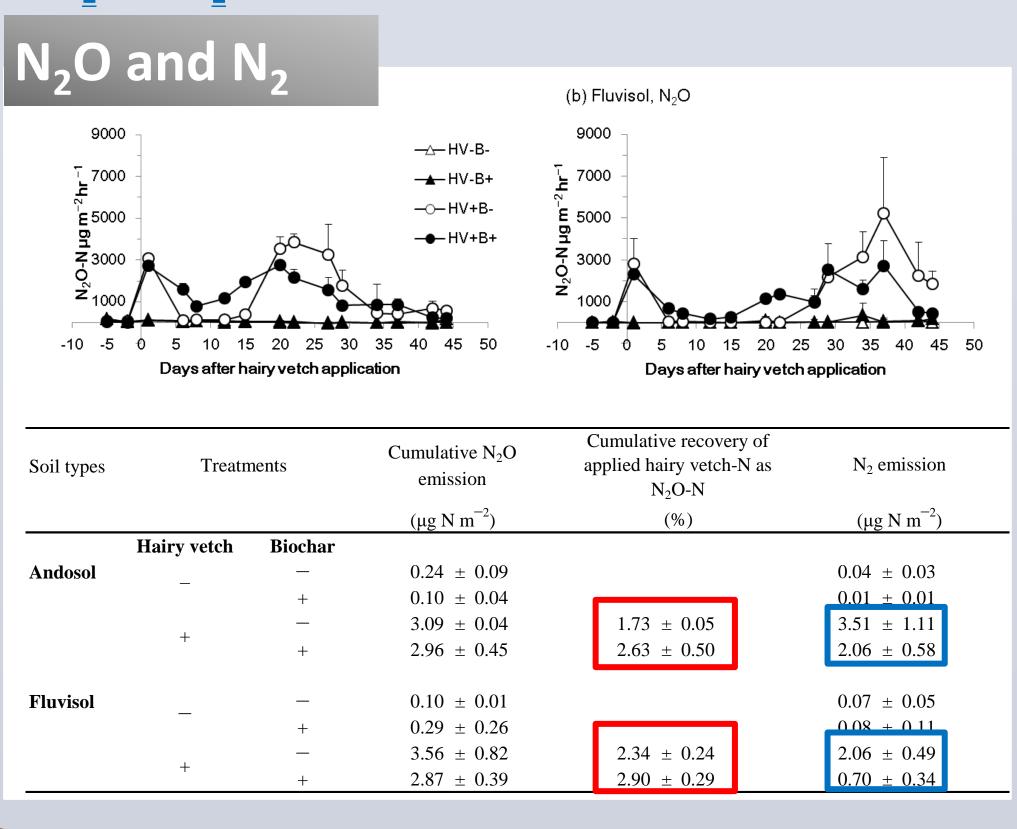


Fig. N₂O emission patterns.

Table. Cumulative N₂O emissions, recovery of applied hairy vetch-N as N₂O-N and cumulative N₂ emissions.

Conclusions

- The effect of the surface applied legume residue, hairy vetch, on inorganic N concentration, N₂O, and N₂ emission were influenced by the presence of rice husk biochar.
- Under saturated soil moisture conditions, the addition of biochar reduced the amount of soil NH₄+-N in an Andosol but the effect of biochar on NH₄+-N was not clear for a Fluvisol. The effect of biochar on N-related microbial processes has to be investigated further in detail.
- The cumulative emission of N₂O was not significantly different with and without biochar both in an Andosol and a Fluvisol. However, the cumulative recovery of applied hairy vetch-N as N₂O-N was higher with biochar.

MEXT/JSPS KAKENHI Grant Number 26520301

