Effects of ammonium sulfate and/or ozone on

the growth and photosynthesis of Japanese larch and hybrid larch F₁

Tetsuto SUGAI¹, Kazuhito KITA², Toshihiro WATANABE¹, Takayoshi KOIKE¹

¹Hokkaido University, ²Hokkaido Forestry Research Institute (Mail: tsugai@for.agr.hokudai.ac.jp)

Introduction

Asia: Changes in atmospheric environment

- \bigcirc N deposition, $(NH_4)_2SO_4$ has been increasing
- → Changing soil condition, causing forest decline finally
- \odot Ground-level ozone (O₃, 0~11 km), made by NOx, VOC
- → Absorbed via stomata, effects trees negatively

Japanese larch (JL), Hybrid larch F₁ (HL)

- \odot Larch (*Larix* spp.): high growth, survival rate \rightarrow Afforestation
- NH₄NO₃ decreased O₃ sensitivity of JL
- The mechanism of this responses are unknown (Aber et al. 1989, Izuta 2001, Watanabe et al. 2006, Koike et al. 2013, Liu et al. 2015)

(Research subject)

The mechanism of the responses to $(NH_4)_2SO_4$ and O_3 in both larch species

Conclusion

The responses to $(NH_4)_2SO_4$ and O_3 depend on larch species

- ©The growth response
 - o Under (NH₄)₂SO₄, O₃ decreased dry mass of hybrid larch F₁
 - o Species difference may be caused by
 - difference in biomass allocation to needle
- ©The photosynthesis response
 - o (NH₄)₂SO₄ + O₃ decreased PNUE of hybrid larch F₁
 - o More O₃ may be absorbed by hybrid larch F₁

Results & Discussion ~ Leaf scale~

- ◎ (NH₄)₂SO₄ increased A_{area} in both species
- © Under $(NH_4)_2SO_4$, O_3 decreased PNUE of HL (p < 0.05)
- \bigcirc (NH₄)₂SO₄ increased G₅: HL < JL
- \bigcirc Under $(NH_4)_2SO_4$, O_3 decreased G_5 of only JL
 - → More O₃ may be absorbed by HL
- ◎ (NH₄)₂SO₄ and O₃ did not significant effect LMA in both species

(Note) A_{area}: Assimilation rate, G_s: Stomatal conductance, LMA: Leaf mass area PNUE: Photosynthesis nitrogen use efficiency (= A_{area} / N_{area}), Different letters : significant differences of A_{area} , G_s and LMA, Tukey HSD, p < 0.05

Results & Discussion ~ Soil condition~

© NO₃⁻ increases significantly however acidification was not significant

Results & Discussion ~ Individual scale ~

- (NH₄)₂SO₄ increased height of both species
- \bigcirc (NH₄)₂SO₄ and O₃ increased LWR of \bot L, respectively (p < 0.05)
- © (NH₄)₂SO₄ increased dry mass of HL however not LWR
- © Under (NH₄)₂SO₄, O₃ decreased dry mass of HL
- \rightarrow Species difference in the dry mass response to $(NH_4)_2SO_4$ and O_3 may depend on difference in the biomass allocation to needle

(Note) LWR:Leaf-whole dry mass ratio, Different black (white) letters: significant differences of LWR (Dry mass), Tukey HSD, p < 0.05

Estimation of coefficients by GLM

(Response value) = (Intercept)+ O_3 +N+Spp.+ O_3 :Spp.+N:Spp.+ O_3 :N+ O_3 :N:Spp.+(1|OTC) (Family: Gaussian, O₃: Control/O₃, N: Control/N, Spp.: Control/Hybrid, OTC: 16)

	(Intercept)	O_3	N	Spp.	$O_3 \times N$	$O_3 \times Spp.$	$N \times Spp.$	$O_3 \times N \times Spp.$
Height	12.3	-0.61	6.48	8.96	-0.20	-3.05	2.06	-2.92
Dry mass	15.3	-5.35	1.51	0.75	6.58	2.22	7.60	-10.50
LWR	0.253	0.064	0.069	-0.001	-0.113	-0.051	-0.060	0.077

 O_3 &

 $(NH_4)_2SO_2$

(Bold letters : significant effect in GLM, p < 0.05)

Open

Chamber

Materials & methods

Location

Sapporo, Exp. For. Hokkaido Univ. (N43.07, E141.38, 15 m a.s.l.)

Plants and Design

2-year-old seedlings planted in 7L pots with Immature volcanic ash soil

Japanese larch (*Larix kaempferi*, JL)

Hybrid larch F₁ (*Larix gmelinii* var. *japonica × L. kaempferi*, HL) Two-growing-season: May 2015 ~ Sept. 2016

 O_3 : 60 ppb, June \sim Oct., 2015, OTC (\rightarrow) May ~ Sept., 2016, 4 OTC per treatments

N: Total of 50kg ha⁻¹ yr⁻¹, 5 times each year **-6/11**, **6/27**, **7/7**, **7/22**, **8/1** (2016)

Hokkaido

Japan

Measurements

Control

4 treatments × 4 seedlings × 2 species × 4 replications

 O_3

- •A_{area}: Assimilation rate, Gs: Stomatal conductance (light saturation & 380 CO₂)
- LI-6400 (Li-Cor, Lincoln, USA), Image J (Wayne Rasvand, NIH), 7/23~31

 $(NH_4)_2SO_4$

- •N_{area}: Needle nitrogen contents NC analyzer (Elemntar, VarioEL III), 7/23~31
- •Soil sampling (0~5 cm): soil pH(KCl)- pH meter (TOADKK, WM-32EP), 7/29
- •Inorganic nitrogen contents- Flow injection analyzer (Aqua lab), 7/29
- •Height (May, 2015 ~ Aug., 2016), Final Harvest (Sept. 2016) + Separate shoots

