

Foliar N contents and dynamics of representative woody plants seedlings in Northern Japan grown under elevated O₃ with a free-air enrichment system

Cong SHI*, F Meng, T Watanabe, F Satoh, T Koike Graduate school of Agriculture, Hokkaido University, Sapporo, Japan cshi1@for.agr.hokudai.ac.jp

Introduction & objective

Increasing of N-deposition & ground-level O₃

• N-deposition and ground-level (tropospheric) O₃ concentration are continuously increasing in East Asia due to the rapid increase of precursor gases emissions

Negative impacts of O₃

- The present O₃ concentration in Japan has a negative impact on the growth of forests and reduce health of tree species
- •Elevated O₃ (eO₃) may **ACCELERATE** foliar senescence
- Little attention has been given to effects of O₃ on foliar N alteration, Will foliar N increase O₃ sensitivities among species? Visible O₃ injury examples:

birch: between oak and beech

Bronze stippling

Leaf miner trails

Wilt disease

Elevated O₃ has an adversely effect on foliar N dynamics, resulting in decline of N acquisition, thereby influence foliar physiological and biochemical processes

Objectives

- Investigate effects of eO₃ on foliar N in the live and senescing leaves as well as the O₃ sensitivity related to foliar N changes
- Estimate the correlation interactions between foliar N contents and other mineral nutrients in leaves as well as the relations between leaf N and leaf mass per area (LMA) among different tree species in Northern Japan

Materials and methods

Location

Sapporo research forest experimental nursery, Hokkaido University (N43.07, E141.38, 15m a.s.l.)

Plant materials and O₃ sensitivity

Two-year old seedlings were planted in 2014;

Based on Yamaguchi et al 2012

Experimental period

July 2014 ~ December 2015 (two growing seasons)

Samples collection

- Live leaves collected at mid-Sept. with peak nutritional activities
- Senescing leaves collected at end-Oct.

Conclusion

- O₃ impacts on foliar N varies with different species:
- > O₃ affects more effectively on birch
- > O₃ has positive effects on oak to promote recycling N beforehand in leaf vigorous stage
- > O₃ has negative effects on beech to obtain N from N cycling in leaf
- Foliar N can be detected as an indicator to evaluate O₃-induced modification in leaf traits

Results

Birch

P

Oak

Ozone effects on foliar N

Leaf nutrient interactions

Beech

Correlations wheels showing

are derived from the Pearson r

(Ca) P < 0.001 and r > 0.5 were denoted

correlation analysis;

Thin lines

Thick lines

Solid lines

Dashed lines

correlations between foliar elements

Only significant correlation with

Correlations

0.5 < r < 0.7

r ≥ 0.7

Positive

Negative

Data are represented as mean \pm SD (n=4-6).

Birch: N in live leaves typically stayed higher than that in senescing leaves, especially for birch with 60% re-translocate

⇒ Birch is relatively more sensitive to eO₃ Oak: O₃ led to 70 % lower N in live leaves

⇒ eO₃ promotes oak to adopt the strategy to recycle N beforehand in leaf vigorous stage Beech: O₃ effects on senescing leaves in beech was less than that in birch.

Beech is easier than birch to obtain N from N cycling at eO₃ since its litter decomposition become faster with O₃ induced accelerant process of defoliation (Kavvadias et al., 2001)

- Negative correlations with foliar N:
- → Ca, Mn, Fe in birch;

Live leaves

- → Fe in oak
- → Al in beech
- Positive correlations with foliar N:
- → K, Al in birch
- → Al in oak
- → none in beech
- ⇒ Interactions between foliar N and a nonessential element (e.g. Al) varied with different species.

Non-mobile mineral

elements in leaf

- ⇒ Birch is more sensitive may concern with the sensitive interactions among foliar nutrients.
- \Rightarrow Fewer effects of eO₃ on foliar N in birch may due to the hormone control regulated by K

	Table: correlation coefficients between foliar N and LMA; pooled=main effects of gases									
	Foliar N	Ambient				Elevated O ₃				
		Birch	Oak	Beech	Pooled	Birch	Oak	Beech	Pooled	
	N _{live}	-0.29*	-0.14**	0.02	-0.46**	-0.07	0.01	0.23*	0.27	
	Nsenescing	-0.51*	0.47	0.03	-0.56**	-0.34	-0.63	0.34	0.41	

Free-air O₃ enrichment & measurements

Experimental design

Correlation of leaf N & LMA

Beech: (x) at Amb \longrightarrow (+) at eO_3

 \Rightarrow O₃ induced modification in leaf traits can

 \Rightarrow eO₃ greatly affects the correlations

Main effects: (--) at Amb

be evaluated by detecting leaf N

between leaf N & LMA

✓ Birch and oak: (--) at Amb \longrightarrow (x) at eO₃

- Two O₃ levels X 3 plots with 3 individual seedlings in each
- Free-air O₃ enrichment system with eO₃ 70~80 ppb and ambient control 35~45 ppb

Measurements

Foliar N contents: NC analyzer (NC - 900)

Other elements:

ICP-MS

Field view

Acknowledgement: This research is partially supported by Japan Society for the Promotion of Science (JSPS, type B: 26292075 to T. Koike)