Modeling ammonia volatilization over Chinese croplands Ziyin Shang¹, Feng Zhou¹, Shuoshuo Gao¹, Yan Bo¹, Philippe Ciais², Kentaro Hayashi³, James Galloway⁴, Dong-Gill Kim⁵, Changliang Yang⁶, Shiyu Li⁶, Bin Liu⁶ - 1 Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871,P.R. China - 2 Laboratoire des Sciences du Climat et de l'Environnement, CEA CNRS UVSQ, 91191 Gif-sur-Yvette, France - 3 Carbon and Nutrient Cycles Division, National Institute for Agro-Environmental Sciences, Kannondai, Tsukuba, Ibaraki 305-8604, Japan Corresponding author: Ziyin Shang (Email: zyshang@pku.edu.cn) Feng Zhou (Email: zhouf@pku.edu.cn) - 4 Environmental Sciences Department, University of Virginia, Charlottesville, Virginia 22904, USA - 5 Wondo Genet College of Forestry and Natural Resources, Hawassa University, PO. Box 128, Shashemene, Ethiopia - 6 Research Institute of Engineering Technology, Yunnan University, Kunming, 650091, P.R. China ## **ABSTRACT** Ammonia (NH₃) released to the atmosphere leads to a cascade of impacts on the environment, yet estimation of NH₃ volatilization from cropland soils (V_{NH3}) in a broad spatial scale is still quite uncertain in China. This mainly stems from non-linear relationships between V_{NH3} and relevant factors. Based on 495 site-years of measurements at 78 sites across Chinese croplands, we developed a nonlinear Bayesian Tree Regression model to determine how environmental factors modulate the local derivative of V_{NH3} to nitrogen application rates (N_{rate}) (V_{R} , %). V_{NH3} - N_{rate} relationship was non-linear. V_{R} of upland soils and paddy soils depended primarily on local water input and N_{rate} , respectively. Our model demonstrated good reproductions of V_{NH3} compared to previous models, i.e., more than 91% of the observed V_{R} variance at sites in China and 79% of those at validation sites outside China. The observed spatial pattern of V_{NH3} in China agreed well with satellite-based estimates of V_{NH3} column concentrations. The average V_{R} in China derived from our model were V_{NH3} and V_{NH3} emission in China (3.96). ### INTRODUCTION Ammonia (NH₃) volatilization has doubled globally since 1860 and may double again by 2050. Fertilizer use, as the secondary contributor to NH₃ emissions after livestock production, accounts for more than 30% of anthropogenic NH₃ volatilization. Uncertainties in the estimates of NH3 emissions from cropland are as large as 50%. Apart from lack of high-resolution statistics on fertilizer use, differences in climate and agricultural practices are essential when upscaling site -scale NH₃ fluxes to regional, national or continental budgets. Recent field experiments indicate that the responses of NH3 emissions (VNH₃) from cropland to N application rate (N_{rate}) are quadratic or exponential, rather than linear, as assumed by the Intergovernmental Panel on Climate Change (IPCC Tier 1) guidelines. Here, we characterize the nonlinearity and variability of the response of V_{NH3} to Nrate (including synthetic fertilizers, manure, and crop residues) and environmental factors (hereafter x_k) across Chinese croplands, using a synthesis of NH₃ flux measurements from field trials. ## DATA & METHODS #### 1) Piecewise models We propose piecewise quadratic models to account for the shape and heterogeneity of V_{NH3} : $$V_{\text{NH3} l} = \Delta V R_{l}(x_{k}) \times N_{\text{rate}}^{2} + V R_{l}^{0}(x_{k}) \times N_{\text{rate}} + V_{l}^{0}(x_{k})$$ $$V R_{l}(x_{k}) = \Delta V R_{l}(x_{k}) \times N_{\text{rate}} + V R_{l}^{0}(x_{k})$$ $$\Delta V R_{l}(x_{k}) = \sum (\alpha_{kl} \times x_{k}) + a_{l}$$ $$V R_{l}^{0}(x_{k}) = \sum (\beta_{kl} \times x_{k}) + b_{l}$$ where: VR : volatilization rate of NH₃, VR = $(V_{NH3}-V^0)/N_{rate}$, %; ΔVR : the change in VR per unit of incremental N_{rate} , %×(kgN×ha⁻¹)⁻¹; VR⁰: initial value of VR without the impact of fertilization, %; V⁰: background NH₃ emission when N_{rate}=0, kgN×ha⁻¹; N_{rate}: nitrogen application rate, kgN×ha⁻¹; *l* : the index of piecewise functions; α_{kl} , β_{kl} , a_l , and b_l : model coefficients for DVR and VR⁰; x_k : the environmental factors; #### 2) Observation dataset The dataset after such data screening comprised 495 site-years, 209 for upland soils (grain crops such as wheat, maize, soybean but excluding rice) and 286 for paddy rice, across 78 sites covering the period from 1990 to 2012. Fig. 1 Location and record number of study sites (n = 79). #### RESULTS: Calibration and validation **Fig. 2** Calibration and validation of VR and V_{NH3} . A or B: calibration of ΔVRs inside China; C or D: validation of ΔVRs outside China; E or F: validation of V_{NH3} from the annual average total columns of NH_3 in 2008 retrieved from IASI satellite observations. Red open circles: The full dataset; Blue solid circles: significant underestimations and sites or pixels subject to extrapolation. ## RESULTS: Spatial patterns of VRs and V_{NH3} **Fig. 3** 1-km spatial patterns of VRs and V_{NH3} , differences with other VR models. Panel A: VRs in 2008, panel B: V_{NH3} in 2008, panel C: difference between PKU-NH₃ model and M2 (VRs are modeled as VR = Δ VR·Nrate+VR⁰ based our data set of NH3 observations), panel D: difference between PKU-NH₃ model and M3(VRs are modeled as VR = Δ VR(x_k)·Nrate + VR⁰ (x_k)). #### RESULTS: Determinants and their effects on VRs **Fig. 4** Functional dependence of VR upon main environmental determinants. Rank of factors contributing to VR of upland soils (A) and paddy soils (B). VR is calculated for the same reference Nrate of 212 (kg N·ha-1), the mean value of the observations used for model calibration. Gray arrows: maximum thresholds; Red arrows: minimum; Gray lines: ±SEM. ## CONCLUSION & REMARKS - PKU-NH3 is reliable in capturing nonlinear response of VR and VNH3. - Water input can explain 78% of the spatial variation of VR for upland soils, while Nrate account 52% for paddy soils. More importantly, join sensitivity of ≥2 factors could be a useful reference for both control experiments and process-based model. - China's NH3 emissions are estimated greatly larger than previous results or that based on IPCC default. Spatial pattern and temporal trends of emissions from both China and globe need to be re-estimated using our model in future, and NH3 mitigation protocol could be refined and effective when considering the spatially-differential sensitivity to fertilizer reductions.