

Dynamics and mineralisation of nitrogen in soil fertilised with brown coal-urea blends

Biplob K. Saha¹, Michael T. Rose², Vanessa Wong³, Timothy R. Cavagnaro⁴ and Antonio F. Patti¹

¹School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia

²NSW Department of Primary Industries, Wollongbar Primary Industries Institute, Wollongbar, NSW 2477, Australia

³School of Earth, Atmosphere & Environment, Monash University, Clayton, Victoria, 3800, Australia

⁴School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, South Australia, 5064, Australia

Introduction

- The nitrogen efficiency of nitrogenous fertiliser is very poor and the transfer to plants seldom exceeds 50% of added N¹.
- \triangleright The low use efficiency of N is consequence of its losses by leaching, denitrification and volatilisation²
- > This lost N represents both an economic inefficiency and an environmental burden³
- > This study aims to increase N-use efficiency by blending brown coal with N fertilisers

Materials and Methods

Figure 1: Preparation of brown coal-urea blends

Brown coal

The soil was treated with N @ 250 mg kg⁻¹ soil. Equal amount of N was added from different BCU granules including urea.

Table I: CN ratio and C and N contents of BCU blends

Granules	C:N	C content (%)	N content (%)
Brown coal-urea I (BCU I)	1.0	40	22
Brown coal-urea 2 (BCU 2)	1.5	46	17
Brown coal-urea 3 (BCU 3)	3.0	49	9
Brown coal-urea 4 (BCU 4)	10.0	54	5

The BCU blends were tested for N emissions under controlled conditions according to the experimental set-up shown in Figure 2

References

(I) Raun, W. R. et al. Agron. J. 2002, 94, 815-820. (2) Dong, L. et al. Biol. Biochem. 2009, 41, 612-621. (3) Wang, Q. et al. Plant. Soil. 2010, 337, 325-339.

Acknowledgements

Grateful to Monash University for PhD scholarships and Brown Coal Innovation Australia (BCIA) for funding the research.

Results and Discussion

Figure 3: Ammonium (A) and nitrate (B) leached out from soil at three different leaching events (Bars indicate standard error, n=5).

Figure 4: Daily N₂O-N emission (A) and NH₃ emission (B) from soil

Figure 5: Ammonium (A) and nitrate (B) content of soil at harvest

- ➤ BCU blends maintained significantly higher amount of N in the soil profile.
- ➤ Greater amount of N will be available for plants over a longer period of time.

Soil Profile NO₃NH₂ NH₄+ Leaching BC-Urea

 N_2O

 NH_3

Conclusions