

Brown coal-urea blends for increasing plant biomass and nitrogen use efficiency

Biplob K. Saha¹, Michael T. Rose², Vanessa Wong³, Timothy R. Cavagnaro⁴ and **Antonio F. Patti¹**

¹School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia

²NSW Department of Primary Industries, Wollongbar Primary Industries Institute, Wollongbar, NSW 2477, Australia

³School of Earth, Atmosphere & Environment, Monash University, Clayton, Victoria, 3800, Australia

⁴School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, South Australia, 5064, Australia

Introduction

- The nitrogen efficiency of nitrogenous fertiliser is very poor and the transfer to plants seldom exceeds 50% of added N¹.
- \triangleright The low use efficiency of N is consequence of its losses by leaching, denitrification and volatilisation²
- > This lost N represents both an economic inefficiency and an environmental burden³
- > This study aims to increase N-use efficiency by blending brown coal with N fertilisers

Materials and Methods

Table I: CN ratio, C and N contents of BCU blends used

Granules	C:N	C content (%)	N content (%)
Brown coal-urea I (BCU I)	1.0	40	22
Brown coal-urea 2 (BCU 2)	1.5	46	17

Plate 1: Experimental set up in the glasshouse

Two soils with contrasting pH (Dermosol pH-5.4 and Tenosol pH-7.2) were tested in this study. Silverbeet was used as a test crop in this pot trial.

Table 2: Treatments applied in this pot trial study

Treatments	
ΤI	Control (Soil only)
T2	Brown coal
Т3	Urea (N@100kg ha ⁻¹)
T4	Brown coal-urea I (BCU I) (N @ 100 kg ha ⁻¹)
T 5	Brown coal-urea 2 (BCU 2) (N @ 100 kg ha ⁻¹)
T6	Urea (N@50kg ha ⁻¹)
T7	Brown coal-urea I (BCU I) (N @ 50 kg ha ⁻¹)
T8	Brown coal-urea 2 (BCU 2) (N @ 50 kg ha ⁻¹)

References

(I) Raun, W. R. et al. Agron. J. 2002, 94, 815-820. (2) Dong, L. et al. Biol. Biochem. 2009, 41, 612-621. (3) Wang, Q. et al. Plant. Soil. 2010, 337, 325-339.

Acknowledgements

Grateful to Monash University for PhD scholarships and Brown Coal Innovation Australia (BCIA) for funding the research.

Results and Discussion

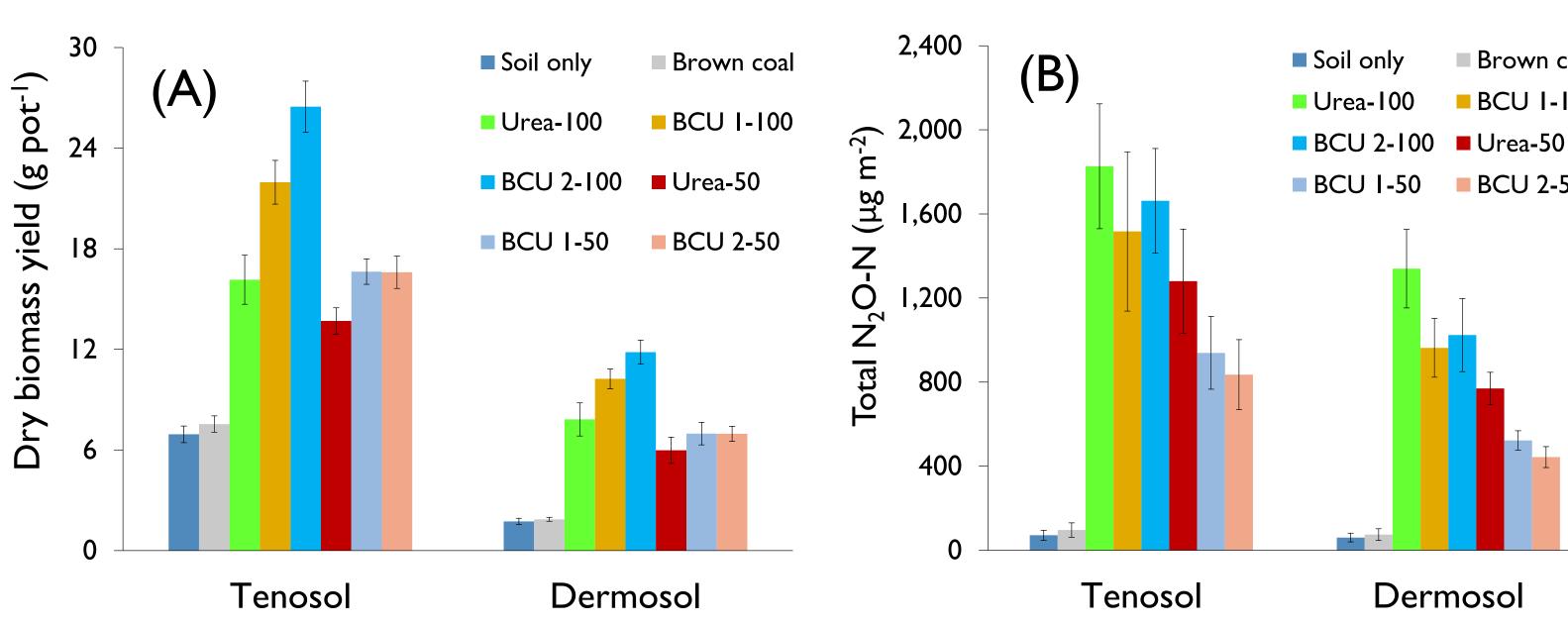


Figure 1: Biomass yield (A) of silverbeet and total N_2O-N emission (B) from soil (Bars indicate standard error, n=5).

- Biomass yield and N uptake by silverbeet were significantly higher with the addition of BCU blends in both soils compared to urea alone.
- Statistically identical biomass yields were obtained from the soils amended with 50 kg N ha⁻¹ from BCU and 100 kg N ha⁻¹ from urea.

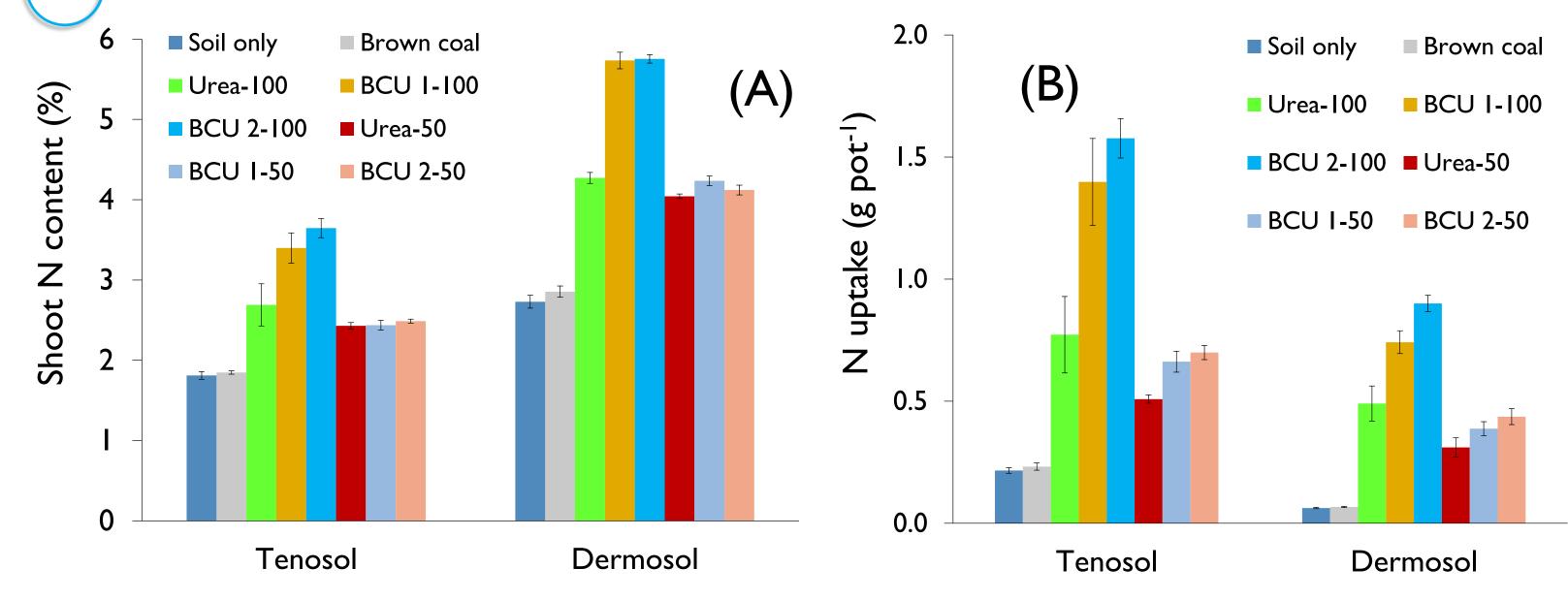


Figure 2: Shoot N content (A) and uptake (B) by silverbeet

Conclusions

- The BCU blends suppressed the total N₂O emissions by 29% and 13% from the Tenosol and Dermosol, respectively.
- Maintained higher available N in soil which facilitated more N uptake by plant.
- The increased N uptake resulted in 27% (Tenosol) and 23% (Dermosol) more biomass yield from BCU blends compared to urea alone.