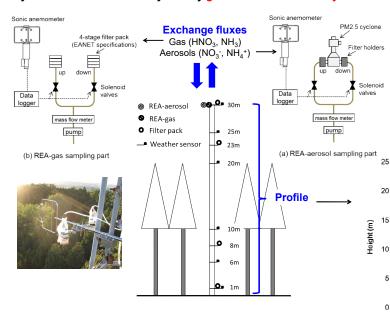
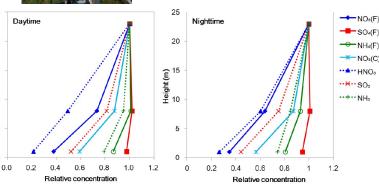
Synthesized measurements of reactive nitrogen fluxes onto a forest using gradient and relaxed eddy accumulation method

Since 1814


Kazuhide Matsuda*, Takaaki Honjo, Mao Xu, Taiichi Sakamoto Faculty of Agriculture Field Science Center, Tokyo University of Agriculture and Technology, Japan

Introduction


In order to assess effects of reactive nitrogen on ecosystems, it is very important to estimate the rates of atmospheric deposition accurately. According to an intercomparison among inferential models to estimate dry depositions of reactive nitrogen, differences between the models reach a factor 2–3 and are often greater than differences between monitoring sites (Flechard et al., 2011). Therefore estimations of reactive nitrogen dry deposition by the models still have large uncertainties.

To improve the models, further understanding of dry deposition mechanisms by measurement-based studies is required. We introduce a synthesized measurement system for the fluxes of reactive nitrogen and relevant species in aerosol and gas phase onto a forest in FM Tama, western Tokyo.

Synthesized measurement system by gradient and relaxed eddy accumulation (REA) method

The synthesized measurement system consists of vertical profile, aerosol flux (REA-aerosol) and gas flux (REA-gas) sampling parts.

Vertical profile measurements

Filter packs at 1, 8, 23, 30 m \sim 2 heights above canopy, 2 heights below canopy Concentrations of fine and course aerosol components, HNO₃, NH₃ and SO₂.

> Flux measurements

REA-aerosol: fluxes of PM_{2.5} components, mainly NO₃⁻ and SO₄²⁻ REA-gas: fluxes of HNO₃, NH₃ and SO₂

based on conditional sampling of updraft and downdraft of REA (relaxed accumulation) method $\,$

Experiments: the summer in 2015 (from 21 to 31 in July)

- > During the period, the forest canopy was leafy and the leaf area index was estimated about 4–5.
- > The samplings were continuously performed in the daytime (6:00–18:00) and in the nighttime (18:00–6:00) during the experiment, except rainy days.

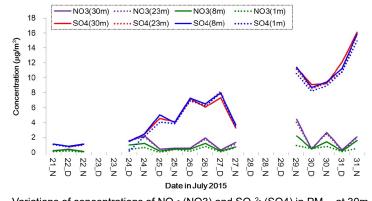
Results and discussion

Deposition velocities (V_d) determined by REA measurements

	SO ₄ ²⁻ in PM _{2.5}	NO ₃ ⁻ in PM _{2.5}	HNO ₃
Average	0.0	2.8	2.0*
29 night	0.0	1.4	1.3
30 night	-0.4	1.6	2.8

Unit: cm/s, V_d = Flux / Concentration, *: average in the night time

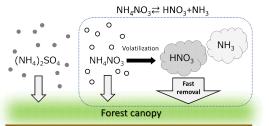
Theoretical Expectations


 $HNO_3 > SO_2 > NO_3^-$ in coarse $> NO_3^-$ in $PM_{2.5} = SO_4^{2-}$ in $PM_{2.5}$

Results measured by the synthesized measurement system

 $HNO_3 > NO_3$ in $PM_{2.5} > SO_2 > NO_3$ in coarse $> SO_4$ in $PM_{2.5}$

- ➢ From the analysis of ion balance in PM_{2.5} inorganic components, most of NO₃⁻ and SO₄²⁻ existed as NH₄NO₃ and (NH₄)₂SO₄, respectively. The discrepancy between theoretical expectations and the results is probably due to the differences of chemical properties between NH₄NO₃ and (NH₄)₂SO₄.
- ➤ Wyers and Duyzer (1997) indicates there is an effect of shifts in equilibrium between aerosol phase (NH₄NO₃) and gas phase (HNO₃, NH₃) near surfaces.
- ➤ Since the V_d of NO₃ in PM_{2.5} were close to that of HNO₃ measured by REA-gas, it is possible that NH₄NO₃ was quickly removed by the forest as well as HNO₃, due to the effect of shifts in equilibrium near surfaces.


Mean vertical profiles of relative concentrations of $PM_{2.5}$ components $(NO_3$: $NO_3(F)$, SO_4^2 : $SO_4(F)$, NH_4^+ : $NH_4(F)$), NO_3 in coarse aerosols $(NO_3(C))$, HNO_3 , SO_2 and NH_3 . (Fig. 3)

Variations of concentrations of NO_3^- (NO3) and SO_4^{2-} (SO4) in PM_{2.5} at 30m, 23m, 8m and 1m. "D" and "N" mean daytime sample (6:00-18:00) and nighttime sample (18:00-6:00), respectively. (Fig. 4)

Conclusion

- Synthesized measurements of the fluxes of reactive nitrogen and relevant species in aerosol and gas phase using gradient and REA method were effective to better understand their deposition mechanisms.
- ➤ The measurements indicated that the effect of shifts in equilibrium between aerosol phase (NH₄NO₃) and gas phase (HNO₃, NH₃) near surfaces possibly enhanced dry deposition of NH₄NO₃.
- ➤ Current dry deposition ratios of NO₃ in PM_{2.5} is possibly underestimated, because the effect of shifts in equilibrium is usually not included in inferential models.

Acknowledgements This work was supported by

The Tokyu Foundation for Better Environment Grant Number 2014-16 and JSPS KAKENHI Grant Number JP16H02933

Figure number and reference can be referred to the proceedings (4-page paper).