A Sequential Diffusion Method for ¹⁵N Natural Abundance Measurement of Ammonium, Nitrate and Total Dissolved Nitrogen in Water Samples

Haruka Kiba¹, Fujio Hyodo², Yuichi Asano³, Morihiro Maeda¹ ¹Graduate School of Environmental and Life Science, Okayama University, ² Research Core for Interdisciplinary Sciences, Okayama University, ³Oyo Corporation

Background and Purposes

- ✓ Nitrogen (N) pollution of ground or surface waters is a serious matter of concern in the world.
- \checkmark Natural abundances of ¹⁵N (δ^{15} N) is a useful tool to estimate sources of N.
- The diffusion-based method has been used for pretreatment of ¹⁵N in water samples.

Materials and Methods

We compared recovery rates of N with different concentration (inorganic N: 0-40 mg L⁻¹, TDN: 0-4 mg L⁻¹) or their $\delta^{15}N$ values (inorganic N: 20 mg L⁻¹, TDN: 2 mg L⁻¹).

- We tried to determine the best conditions for a sequential diffusion-based method to collect ammonium (NH₄-N), nitrate (NO_3-N) and total dissolved nitrogen (TDN).
- Purposes are to examine (1) necessary recovery time, (2) the \checkmark range of N concentration, and (3) isotopic fractionation during the process.

Results and Discussion

Fig. 2 Initial vs. recovered inorganic N in low and high concentration samples. N recovery rates were 100% at 0.3–20 mg L⁻¹ and varied at $30-40 \text{ mg L}^{-1}$. In blank samples, NH₄-N concentrations were about 0.02 mg L⁻¹. \rightarrow Best range: 0.3-20 mg L⁻¹.

Fig. 3 Initial vs. recovered TDN in low and high concentration samples.

Fig. 4 Recovery rates of N for different amounts as NH₄Cl or glycine solution with concentration of 2mg L⁻¹.

N recovery rates were 100% at 0.2–3 mg L⁻¹ and varied at 2 mg L⁻¹ in low concentration samples. In blank samples, NH_4 -N concentrations were about 0.02 mg L⁻¹. \rightarrow Best range: 0.3-3 mg L⁻¹.

Table 5 $\delta^{15}N$ values of recovered N by the sequential diffusion method, compared with the original chemicals.

Sample name	Concentration (mg L ⁻¹)	δ ¹⁵ N (‰)
NH ₄ -N		
NH ₄ CI (Reagent, <i>n</i> =3)		-0.9 ± 0.0
Recovered sample (n=3)	20.0	-0.6±0.1
NO ₃ -N		
KNO ₃ (Reagent, <i>n</i> =3)		-1.8±0.0
Recovered sample (n=3)	20.0	-2.5 ± 0.1
TDN		

 δ^{15} N values of NH₄-N, NO₃-N, and TDN recovered with PTFE traps were similar to each reagent.

Recovery rates were 100% when the amounts of N Glycine (Re were $<100 \mu g$. \rightarrow Limited capacity: 90 µg N of PTFE traps.

Glycine (Reagent, <i>n</i> =3)	—	$+0.4\pm0.0$
Recovered sample (n=6)	2.0	$+0.2\pm0.4$

—: Not measured

Conclusion

(1) Necessary recovery time:

N recovery can be shortened to 24 hours by increasing temperature to 40°C.

(2) The range of N concentration:

Inorganic N concentration should be $0.3-20 \text{ mg } \text{L}^{-1}$ (Fig. 2).

TDN concentration should be $0.25-3 \text{ mg } L^{-1}$ (Fig. 3) and the amount of N < 90 µg N in a vial (Fig. 4).

(3) Isotopic fractionation during the process:

No isotopic fractionation occurred during the process of this method (Table 5).