Soil pH controls N_2O and N_2 emissions from upland agricultural soils across China

Feifei Zhu^{1,2}, Yunting Fang^{1,2*}, Limei Zhang³, Rong Sheng⁴, Wenxue Wei⁴, Jizheng He^{3,5}.

¹Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China, 110016, zhuff@iae.ac.cn

² Qingyuan Forest CERN, Shenyang, China, 110016

³ State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China, 100085

⁴ Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China, 410125

⁵ Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia.

Abstract

Soil N₂ emission is an important pathway of N losses which is difficult to quantify in terms of both the magnitude and the contributions of the processes involved, yielding uncertainty in closing the N budget for agricultural systems. In this study, by adopting ¹⁵N labelling and ¹⁵N pairing technique under *in vitro* anaerobic conditions, the potential production rates of N₂O and N₂, the N₂:N₂O, and factors controlling denitrification, combined co-denitrification and anaerobic ammonium oxidation (anammox) were investigated for soils from 8 maize-growing regions across China from 26° N to 46° N latitude. The measured potential rates of N₂O and N₂ productions were 0.1 to 6.5 nmol ¹⁵N g⁻¹ h⁻¹ and 8.1 to 41.5 nmol ¹⁵N g⁻¹ h⁻¹, respectively. The dominance of N₂ over N₂O production resulted in N₂:N₂O ratios from 4 to 372 in these soils. N₂O production was high at low pH soils, suggesting possible inhibition on N₂O reduction. Denitrification dominated both N₂O and N₂ production, contributing to 85 ~ 99% of N₂O, and 65 ~ 100% of N₂ productions, respectively. Correlation analysis suggested that soil pH explained 30% and 46% of the variations in ¹⁵N₂O and ¹⁵N₂ production, respectively. Soil pH was the most important factors controlling the ratio of N₂ to N₂O emissions through denitrification in the studied upland agricultural soils across China, which implies that we may be able to estimate soil N₂ losses from upland soils at a regional scale using N₂O emission rates and soil pH.

Keywords: greenhouse gases, denitrification, co-denitrification, anammox

Introduction

Denitrification produces N_2O and N_2 during a stepwise anaerobic reduction of nitrate (NO_3) via nitrite (NO_2), and NO to N_2O and finally to N_2 (Zumft 1997). As the main products of denitrification, N_2O and N_2 released are often variable. Environmental factors known to influence the $N_2O/(N_2O + N_2)$ are pH, organic carbon, NO_3 availability, water content, and O_2 partial pressure (Cuhel et al., 2010). Among these factors, soil pH might be the most important factor influencing both denitrification and N₂O production (Simek and Cooper 2002). In general, the denitrification rate increases with increasing pH values (up to the optimum pH), while, the $N_2O/(N_2O + N_2)$ ratio decreases (Simek and Cooper 2002). This relationship has been characterized both in laboratory experiments (Cuhel and Simek 2011; Simek and Cooper 2002) and in the field (Cuhel et al., 2010) by artificially modifying soil pH to achieve gradients from acid to alkaline conditions. However, such studies were considered to capture the responses of targeted system to sudden and short-term changes in soil pH, by which the adaptation of the microbial community were ignored and not taken into account in interpretation of results (Baggs et al., 2010). Indeed, both ammonia oxidation and denitrification are generally considered to be the results of long-term adaptation of each microbial community to in situ differences in environmental characteristics (Nicol et al., 2008; Simek and Cooper 2002). "Historical pH" was demonstrated to play the more important role in influencing denitrifying enzyme activity (DEA), with current pH (immediate pH adjustment) more affecting the $N_2O/(N_2O + N_2)$ ratio (Cuhel and Simek 2011). However, it remains largely unclear if the same relationships exist between pH and the $N_2O/(N_2O + N_2)$ ratio in natural soil pH gradients over relatively large regional scales.

In addition, co-denitrification was shown to also generate N₂O and/or N₂ two decades ago, but in a different

manner compared to the traditional denitrification (Shoun et al., 1992; Tanimoto et al., 1992). Codenitrification produces hybrid N-N species (N_2O or N_2), with one N atom from NO₂⁻ and the other from a cometabolized N compound, such as azide, amines, imines within the substrate (Tanimoto et al., 1992). In spite of its unique characteristics, the co-denitrification process had been less intensively investigated for microbial N-N gas formation in soils. Studies focusing on this process had been carried out in grassland soils from northern Ireland (Laughlin and Stevens 2002), soil suspension from an agricultural research site in Germany (Spott and Stange 2011), several agricultural soils from USA (Long et al., 2013), and soils from permanent grazed grassland soil in southeast Ireland subjected to a large input of livestock urine (Selbie et al., 2015). Among these studies, co-denitrification was shown to contribute to 32 to 78% (Long et al., 2013), 92% (Laughlin and Stevens, 2002) and 98.1% (Selbie et al., 2015) of N_2 production as compared with denitrification. In contrast, N₂O formations were entirely attributed to denitrification in the two studies by Laughlin and Stevens (2002) and Selbie et al. (2015), although the magnitude of N_2O production differed greatly. As pointed out by Spott et al. (2011), we know rather little about the contribution of co-denitrification to soil N_2O and N_2 release and environmental factors that influence the process. Anammox, which refers to the anaerobic ammonium oxidation with nitrite reduction to N₂, is another process that can produce hybrid N₂ species by combining one N atom from ammonium and the other from nitrite (deGraaf et al., 1996). This reaction has been reported in marine ecosystems and land-freshwater interfaces, like anoxic water column (Dalsgaard et al., 2003) oxygen-minimum zones (Kuypers et al., 2005), estuary sediments (Hou et al., 2013; Risgaard-Petersen et al., 2004), river sediments (Zhao et al., 2013; Zhou et al., 2014) and paddy soils (Sato et al., 2012; Yang et al., 2015; Zhu et al., 2011) and its contribution to N_2 loss was estimated to be 50% in some marine environments (Devol 2015) and 1 to 37% for some paddy soils (Sato et al., 2012; Zhu et al., 2011). Co-denitrification and anammox both contribute to soil N_2 emissions but their respective contributions are still hard to separate (Xi et al., 2016).

In this study, we investigate the influence of environmental factors, especially pH, on N₂O and N₂ production, as well as on the N₂O/(N₂O + N₂) ratios in eight areas from three representative agricultural regions across China (northeast, central and southern China). These soils are expected to vary in textures, physicochemical properties, covering a relatively wide range of soil pH (from 4.3 to 8.7). In combination with ¹⁵N tracer technique (addition of ¹⁵N enriched denitrification substrates), we adopted the recently improved isotope ratio mass spectrometry technique by Yang *et al.* (2014) to track subsequent ¹⁵N₂O and ¹⁵N₂ productions. We also partitioned the sources of N₂O and N₂ to denitrification or co-denitrification plus anammox based on the different ¹⁵N isotope pairing between these processes (Nielsen, 1992). The overall objective was to improve our understanding of potential losses of N₂O and N₂, as well as the N₂O/(N₂O + N₂) ratio and controlling factors, and responsible processes (denitrification vs. co-denitrification plus anammox) from major Chinese upland agricultural soils. We hypothesized that ambient soil pH is the major component influencing the end products of denitrification (N₂O vs. N₂) and thus the N₂O/(N₂O + N₂) ratio. If so, it implies that we may be able to map annual soil N₂ losses using annual N₂O emission rate and soil pH at a large regional scale.

Methods

In the growing season of 2014 (from the middle July to early August), surface layer samples (0-15 cm) were collected in triplicate from 84 maize fields across 8 maize cultivation regions of China, spanning latitude from 26° N to 46°N. These regions included Harbin (HEB), Changchun (CC), and Gongzhuling (GZL) from northeast China; Luancheng (LC) and Fengqiu (FQ) from central China; and Taoyuan (TY), Qiyang (QY), and Yingtan (YT) from southern China. These sampling areas were expected to exhibit broad-scale variations in soil physicochemical properties with respect to the parent material, soil texture, soil pH and organic matter. All fields were grown with maize following typical regional management practices and had been treated with inorganic fertilizers for years. Soil samples from each core were homogenized and passed through 2-mm sieves before storage in a 4 °C refrigerator. The sieved soil samples were divided into three sets of subsamples. One set was stored at 4 °C for ammonium (NH₄⁺) and nitrate (NO₃⁻) concentration analysis. The second part was used for isotope tracer incubation, and the remaining sample was air dried for soil texture, C and N content, and pH analyses. Laboratory incubations were conducted to measure ¹⁵N₂O and ¹⁵N₂ production rates with the addition of enriched NH₄¹⁵NO₃.

Results

We calculated ¹⁵N₂O fluxes from measured net N₂O fluxes and the ¹⁵N enrichment of N₂O. The ¹⁵N₂ production rates were calculated using the mass of N₂ in the vial headspace (nmol) and the ¹⁵N mole fractions of sampled

N₂ at the end of incubation. In the soils from all eight areas, N₂ was the dominant end product of denitrification over N₂O under our experimental conditions, especially in FQ and LC (central China). Large variations in both ¹⁵N₂O and ¹⁵N₂ production were observed among these areas. For ¹⁵N₂O, the lowest flux of 0.1 nmol ¹⁵N g⁻¹ h⁻¹ was recorded in LC, central China, while the highest was recorded in YT, southern China (6.5 nmol ¹⁵N g⁻¹ h⁻¹). The ¹⁵N₂O fluxes from soils in TY, QY, and YT in southern China were significantly higher than those from FQ and LC in central China (P = 0.022). For ¹⁵N₂, the fluxes ranged from 8.7 nmol ¹⁵N g⁻¹ h⁻¹ in CC to 41.5 nmol ¹⁵N g⁻¹ h⁻¹ in LC. Significantly higher ¹⁵N₂ was recorded in FQ and LC in central China than other areas in southern and northeast China (P < 0.001).

The dominance of ${}^{15}N_2$ potential production resulted in large ${}^{15}N_2$: ${}^{15}N_2O$ ratios, with the production of ${}^{15}N_2$ exceeding those of ${}^{15}N_2O$ by a factor of 3 (YT, southern China) to 371 (LC, central China). A significantly higher ${}^{15}N_2$: ${}^{15}N_2O$ ratio occurred in LC, central China compared with all other areas (P < 0.001). The relative share of the ${}^{15}N_2O$ emission from total emissions (${}^{15}N_2O + {}^{15}N_2$) was 51%, 38% and 52% in TY, QY, and YT from southern China, respectively; 43%, 26%, 16% in CC, GZL, and HEB from northeast China, respectively; and only 4% and 0.003% in FQ and LC from central China, respectively, with those relative shares from TY and YT (southern China) being significantly higher than those from FQ and LC (central China) (P = 0.022).

A stepwise multiple linear regression model identified soil pH as the most important factor influencing both ¹⁵N₂O and ¹⁵N₂ production (data not shown). Pearson's correlation analyses indicated that soil pH alone explained 30% and 46% of the variation in ¹⁵N₂O production and ¹⁵N₂ production, respectively (P < 0.001 for both), although the direction of the pH influence was different. ¹⁵N₂O emissions were high from the soil with low pH and decreased with increasing pH (y = -1.97x + 16.43, $R^2 = 0.30$, P < 0.001); in contrast, ¹⁵N₂ production increased steadily as soil pH increased (y = 8.52x - 34.4, $R^2 = 0.46$, P < 0.001). Consequently, the ¹⁵N₂O proportion (¹⁵N₂O/(¹⁵N₂O + ¹⁵N₂)) decreased sharply as the soil pH increased, with 39% of the variation explained by pH ($y = -0.0628 + 0.775e^{(-(x-4.24)/2.11)}$, $R^2 = 0.39$; P < 0.001). ¹⁵N₂:¹⁵N₂O ratios, on the other hand, stayed low for low pH soils and increased exponentially as the soil pH increased, peaking at a soil pH of approximately 8 ($y = e^{(x-2.97)}$, $R^2 = 0.28$, P < 0.001). The factors other than soil pH affecting ¹⁵N₂O and ¹⁵N₂O production included the soil texture (clay content for ¹⁵N₂O, $R^2 = 0.1$, P = 0.002, data not shown) and soil background nitrate concentrations (for ¹⁵N₂O, $R^2 = 0.08$, P < 0.001, for ¹⁵N₂, $R^2 = 0.07$, P = 0.02, data not shown). Pearson's correlation analysis also showed an explanatory power of 44% for CO₂ respiration on (¹⁵N₂O + ¹⁵N₂) production increased as more CO₂ was respired but started to drop when CO₂ respiration went above 1200 nmol g⁻¹ h⁻¹.

Based on the ⁴⁵N₂O, ⁴⁶N₂O, and ²⁹N₂, ³⁰N₂ productions from the ¹⁵NO₃⁻ incubation, the production rates of N₂O and N₂ from denitrification and combined anammox and co-denitrification were calculated respectively (Table 3). The relative contribution of each process to N₂O and N₂ productions were also given in Table 3. For both N₂O and N₂, denitrification was the dominant producing process. N₂O produced by denitrification ranged from 0.1 in LC, central China to 6.7 nmol N g⁻¹ h⁻¹ in YT, southern China, accounting for 85 to 99% of total N₂O production. Co-denitrification-contributed N₂O productions ranged from 0.02 nmol N g⁻¹ h⁻¹ to 0.41 nmol N g⁻¹ h⁻¹, accounting for 0.5 to 15% of total N₂O production. Comparison between areas indicated that denitrification contribution to N₂O production was significantly higher in HEB, northern China than that from LC, central China (P < 0.05), while co-denitrification-contributed N₂O fraction were highest in LC, central China, and lowest in HEB, northern China (P < 0.05). For N₂, denitrification-derived rates were from 8.6 nmol N g⁻¹ h⁻¹ to 43.6 nmol N g⁻¹ h⁻¹ of N₂, representing 0 to 35% of N₂ rates. In FQ, LC in central China and HEB, northern China, N₂ were produced solely by denitrification. Correlation analyses showed that denitrification positively correlated with co-denitrification to produce N₂O (R² = 0.22, *P* < 0.001), but correlated negatively to produce N₂(R² = 0.19, *P* < 0.001).

Conclusions

In summary, our results indicate that soil pH was the most important factor influencing the potential productions of both N_2 and N_2O , as well as $N_2:N_2O$ ratios under anaerobic conditions in maize soils across China. As the soil pH increased, the N_2O production decreased, the N_2 emissions and total denitrification rates increased, resulting in elevated $N_2:N_2O$ ratios. Denitrification, as compared with co-denitrification (for N_2O) or co-denitrification plus anammox (for N_2), dominated both N_2O and N_2 production, contributing to 85.2~99.5% of N_2O , and 65.3~100% of N_2 potential productions, respectively. Soil pH appeared to be one of the most

important controllers of N_2O and N_2 emissions through denitrification in upland agricultural soils across China, which may supply us with the possibility of estimating soil N_2 losses using *in situ* N_2O fluxes and soil pH at a large regional scale.

References

- Baggs, E. M., C. L. Smales, and E. J. Bateman (2010). Changing pH shifts the microbial sourceas well as the magnitude of N2O emission from soil, Biology and Fertility of Soils 46, 793-805.
- Cuhel, J., and M. Simek (2011). Proximal and distal control by pH of denitrification rate in a pasture soil, Agriculture Ecosystems & Environment 141, 230-233.
- Cuhel, J., M. Simek, R. J. Laughlin, D. Bru, D. Cheneby, C. J. Watson, and L. Philippot (2010). Insights into the effect of soil pH on N2O and N-2 emissions and denitrifier community size and activity. Applied and Environmental Microbiology 76, 1870-1878.
- Dalsgaard, T., D. E. Canfield, J. Petersen, B. Thamdrup, and J. Acuna-Gonzalez (2003). N₂ production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica. Nature 422(6932), 606-608.
- deGraaf, A. A. V., P. deBruijn, L. A. Robertson, M. S. M. Jetten, and J. G. Kuenen (1996). Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor. Microbiology-UK 142, 2187-2196.
- Devol, A. H. (2015). Denitrification, anammox, and N(2) production in marine sediments. Annual Review of Marine Science 7, 403-423.
- Hou, L. J., Y. L. Zheng, M. Liu, J. Gong, X. L. Zhang, G. Y. Yin, and L. You (2013). Anaerobic ammonium oxidation (anammox) bacterial diversity, abundance, and activity in marsh sediments of the Yangtze Estuary. Journal of Geophysical Research-Biogeosciences 118, 1237-1246.
- Kuypers, M. M., G. Lavik, D. Woebken, M. Schmid, B. M. Fuchs, R. Amann, B. B. Jorgensen, and M. S. Jetten (2005). Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proceedings of the National Academy of Sciences U S A 102, 6478-6483.
- Laughlin, R. J., and R. J. Stevens (2002). Evidence for fungal dominance of denitrification and codenitrification in a grassland soil. Soil Science Society of America Journal 66, 1540-1548.
- Long, A., J. Heitman, C. Tobias, R. Philips, and B. Song (2013). Co-occurring anammox, denitrification, and codenitrification in agricultural soils. Applied and Environmental Microbiology 79, 168-176.
- Nicol, G. W., S. Leininger, C. Schleper, and J. I. Prosser (2008). The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environmental Microbiology 10, 2966-2978.
- Nielsen, L. P. (1992). Denitrification in Sediment Determined from Nitrogen Isotope Pairing. FEMS Microbiology Ecology 86, 357-362.
- Risgaard-Petersen, N., R. L. Meyer, M. Schmid, M. S. M. Jetten, A. Enrich-Prast, S. Rysgaard, and N. P. Revsbech (2004). Anaerobic ammonium oxidation in an estuarine sediment. Aquatic Microbial Ecology 36, 293-304.
- Sato, Y., et al. (2012). Detection of Anammox Activity and 16S rRNA Genes in Ravine Paddy Field Soil. Microbes and Environments 27, 316-319.
- Selbie, D. R., et al. (2015), Confirmation of co-denitrification in grazed grassland. Scientific Reports, 5.
- Shoun, H., D. H. Kim, H. Uchiyama, and J. Sugiyama (1992). Denitrification by fungi. FEMS Microbiology Letters 94, 277-281.
- Simek, M., and J. E. Cooper (2002). The influence of soil pH on denitrification: progress towards the understanding of this interaction over the last 50 years, European Journal of Soil Science 53, 345-354.
- Spott, O., and C. F. Stange (2011). Formation of hybrid N₂O in a suspended soil due to co-denitrification of NH₂OH, Journal of Plant Nutrition and Soil Science 174, 554-567.
- Spott, O., R. Russow, and C. F. Stange (2011) Formation of hybrid N₂O and hybrid N₂ due to codenitrification: First review of a barely considered process of microbially mediated N-nitrosation. Soil Biology and Biochemistry 43, 1995-2011.
- Tanimoto, T., K. Hatano, D. H. Kim, H. Uchiyama, and H. Shoun (1992). Co-denitrification by the denitrifying system of the fungus Fusarium-Oxysporum. FEMS Microbiology Letters 93, 177-180.
- Xi, D., R. Bai, L. M. Zhang, and Y. T. Fang (2016). Contribution of anammox to nitrogen removal in two temperate forest soils. Applied and Environmental Microbiology 82, 4602-4612.
- Yang, W. H., A. C. McDowell, P. D. Brooks, and W. L. Silver (2014). New high precision approach for measuring ¹⁵N–N₂ gas fluxes from terrestrial ecosystems. Soil Biology and Biochemistry 69, 234-241.

© Proceedings of the 2016 International Nitrogen Initiative Conference, "Solutions to improve nitrogen use efficiency for the world", 4 – 8 December 2016, Melbourne, Australia. <u>www.ini2016.com</u>

- Yang, X. R., H. Li, S. A. Nie, J. Q. Su, B. S. Weng, G. B. Zhu, H. Y. Yao, J. A. Gilbert, and Y. G. Zhu (2015). Potential contribution of anammox to nitrogen loss from paddy soils in Southern China. Applied and Environmental Microbiology, 81, 938-947.
- Zhao, Y. Q., Y. Q. Xia, T. M. Kana, Y. C. Wu, X. B. Li, and X. Y. Yan (2013). Seasonal variation and controlling factors of anaerobic ammonium oxidation in freshwater river sediments in the Taihu Lake region of China. Chemosphere, 93, 2124-2131.
- Zhou, S., S. Borjigin, S. Riya, A. Terada, and M. Hosomi (2014). The relationship between anammox and denitrification in the sediment of an inland river, Science of the Total Environment 490, 1029-1036.

© Proceedings of the 2016 International Nitrogen Initiative Conference, "Solutions to improve nitrogen use efficiency for the world", 4 – 8 December 2016, Melbourne, Australia. <u>www.ini2016.com</u>