Trends of monitored nitrogen species at monitoring sites in North America

Leiming Zhang¹, Irene Cheng¹, Xiaohong Yao²

¹ Air Quality Research Division, Environment and Climate Change Canada, Toronto (leiming.zhang@canada.ca) ² Ocean University of China, Qingdao, China

Abstract

Long-term (1983-2011) air concentrations and annual wet deposition of ammonium and nitrate at 30 Canadian sites were analyzed. Long-term median atmospheric NH_4^+ and NO_3^- ranged from 0.1-1.7 and 0.03-2.0 µg/m³ among the sites, respectively. Median annual wet deposition varied from 0.2-5.8 and 0.8-23.3 kg/ha for NH_4^+ and NO_3^- , respectively. Long-term decline in atmospheric NH_4^+ from 1994-2010 was observed, whereas atmospheric NO_3^- increased from 1991-2001 and then declined from 2001-2010. Annual wet deposition of NO_3^- decreased at most sites by 0.07-1.0 kg/ha/a. Average gaseous HNO₃ and particulate NO_3^- wet scavenging contributions to nitrate wet deposition were $72\pm23\%$ and $28\pm23\%$, respectively. Gaseous NH_3 and particulate NH_4^+ contributed $30\pm19\%$ and $70\pm19\%$ to wet NH_4^+ deposition.

Interannual variabilities in atmospheric ammonia during the most recent seven to eleven years were investigated at fourteen sites across North America. The long-term average of NH₃ ranged from 0.8 to 2.6 ppb among the four urban and two rural/agriculture sites in Canada. The annual average at these sites did not show any deceasing trend with largely decreasing anthropogenic NH₃ emission. An increasing trend was actually identified from 2003 to 2014 at one urban site. In the U.S., average NH₃ from 2008 to 2015 was 2.2-4.9 ppb at three rural/agriculture sites and was 0.3-0.5 ppb at four remote sites. A stable trend at one and increasing trends at three rural/agricultural sites were identified. Increasing trends at the four remote sites were also identified. Changes in NH₄⁺/NH₃ partitioning and/or air-surface exchange process as a result of the decreased sulfur emission and increased ambient temperature were believed to be the causes of NH₃ at some of the sites.

Key Words

Inorganic nitrogen, air concentration, natural emission, gas-particle partitioning, wet deposition.

Introduction

The Canadian Air and Precipitation Monitoring Network (CAPMoN) measures gaseous HNO₃ and particulate NO_3^- and NH_4^+ , among other water-soluble inorganic ions, in air and precipitation across Canada. CAPMoN data are used to study trends in atmospheric pollutants related to smog and acid rain. The precipitation scavenging of HNO₃, NO_3^- , and NH_4^+ have direct impacts on acid rain by increasing the input of nitrate to soil and surface water. Nitrate in soil depletes essential plant nutrients, such as base cations, and increases inorganic aluminum which is toxic to biota. Acid rain has been detrimental to red spruce and sugar maple trees (Driscoll et al. 2001) and contributed to lake acidification in Canada and northeastern U.S., which has resulted in detrimental effects on zooplankton and fish (Driscoll et al. 2001; Clair et al. 2002). It is therefore important to continually study the wet deposition of nitrogen species and acid rain. This dataset has been studied for (1) analyzing long-term geographical and temporal trends in atmospheric and wet deposition of NO_3^- and NH_4^+ , (2) determining scavenging ratios of NO_3^- and HNO₃, and (3) estimating the relative contributions of particulate and gaseous nitrogen species to total nitrate and ammonium wet deposition.

National Air Pollution Surveillance (NAPS) in Canada and Ammonia Monitoring Network (AMoN) in the U.S. started monitoring NH_3 in recent years considering its important roles in the formation of fine particles and related impacts on air quality, climate, and ecosystem. NH_3 data during the most recent seven to eleven years at fourteen selected sites from NAPS and AMoN were analyzed for understanding its long-term trends and interannual variabilities.

Methods

Air and precipitation analyses

Daily air samples were collected on filters and daily wet deposition was collected using a wet-only sampler. The samples were analyzed for major inorganic ions and trace gases in the air samples. Valid air concentrations from 1983-2010 at 16 sites and precipitation measurements from 1984-2011 at 30 sites were

analyzed. The monitoring sites are located across Canada, but predominantly in southeastern Canada. Geographical patterns and temporal trends in air concentrations and annual wet deposition were examined. Statistical analyses of temporal trends were performed using regression analysis and the Mann-Kendall and Seasonal Kendall Tests (Gilbert 1987).

Scavenging ratio

Monthly scavenging ratios, defined as a ratio of a pollutant's concentration in precipitation to that in air (W = $C_{\text{prec}}/C_{\text{air}}$, were first determined for particulate-phase ions (Ca²⁺, Mg²⁺, Na⁺, K⁺). Scavenging ratio of coarse PM (W_{cPM}) was determined by averaging W_{Ca} , W_{Mg} , and W_{Na} since these base cations are predominantly in coarse PM. W_K was used as a surrogate for the scavenging ratio of fine PM (W_{fPM}) for inland sites, whereas $W_{\rm K}/2$ was assumed for coastal sites to exclude the wet deposition of K⁺ in the coarse fraction.

Relative contributions of gaseous and particulate species to nitrate and ammonium wet deposition Wet deposition of NO_3^- and NH_4^+ can be attributed to the precipitation scavenging of atmospheric NO_3^- and gaseous HNO₃ and atmospheric NH₄⁺ and gaseous NH₃, respectively. However, most wet deposition networks including CAPMoN routinely measure total NO₃⁻ and NH₄⁺ wet deposition. To determine their relative contributions, particulate wet scavenging is first calculated from W_{cPM}, W_{fPM}, particulate air concentration, and fine and coarse PM mass fractions. The difference between the total wet scavenging and particulate wet scavenging is assumed to be the wet scavenging contribution from gases. The wet scavenging of atmospheric NO_3^{-} (pNO₃⁻) was estimated as follows:

 $[pNO_3]_{prec} = W_{fPM} [pNO_3]_{air} P_f + W_{cPM} [pNO_3]_{air} (1-P_f)$, where P_f is the fine mass fraction of NO₃, which is temperature-dependent (assuming a P_f of 0.84 during winter and P_f of 0.29 for all other months). The contribution of HNO₃ to nitrate wet deposition was calculated as follows:

 $[HNO_3]_{prec} = [total NO_3]_{prec} - [pNO_3]_{prec}$, where $[total NO_3]_{prec}$ is the monthly volume-weighted NO₃ precipitation concentration and [pNO₃]_{prec} is the wet scavenging of pNO₃ previously determined. The relative contributions of particulate and gaseous species to NO₃ wet deposition were calculated as follows:

 $\text{%pNO}_3^- = ([pNO_3^-]_{prec}) \times 100\%$ and $\text{%HNO}_3 = ([HNO_3]_{prec}) \times 100\%$. These equations were used to estimate the wet scavenging contributions of atmospheric NH_4^+ and gaseous NH_3 .

Ammonia trend analyses

Two trend analysis tools, i.e., the Mann-Kendall (M-K) analysis (Gilbert, 1987) and the Ensemble Empirical Mode Decomposition (EEMD, Wu et al., 2009), were used to resolve the time series of atmospheric NH_3 in mixing ratio at these sites.

Results

Geographical and temporal trends in air concentrations

Air concentrations ranged from 0.018-5.8 μ g/m³ for NH₄⁺, 0.009-8.7 μ g/m³ for NO₃⁻, and 0.014-5.0 μ g/m³ for HNO₃. These ions have similar geographical patterns. The highest median concentrations were found at agricultural sites in southeastern Canada, which are closest to industrial and urban areas. NH_4^+ concentrations have been decreasing at 12/16 sites at a rate of -4 to -58 ng/m³/a (Figure 1a). This trend corresponds to declines in regional ammonia emissions since 2002. Increasing and decreasing trends in NO_3^{-1} were observed from 1991-2001 and 2001-2010, respectively, and coincided with NO_x emissions trends in Canada. NO_x emissions in Canada increased annually from 1991-1997 and decreased from 1997-2010. In the U.S., NO_x emissions were constant from 1991-1994 and decreased after 1994.

Geographical and temporal trends in wet deposition

Annual wet deposition of NH₄⁺ and NO₃⁻ ranged from 0.1-6.4 and 0.4-26.5 kg/ha, respectively. The highest annual wet deposition rates for NH4⁺ and NO3⁻ were found in southeastern Canada closest to industrial and urban areas. Lowest annual wet deposition was observed at higher latitude sites and in western/central Canada. Significant trends in the annual wet deposition of NH_4^+ were observed at only 3/16 Canadian sites, unlike widespread declines in the U.S. (Lehmann et al. 2007). Declining trends in NO₃⁻ wet deposition was observed at 10/16 sites at magnitudes ranging from -0.07 to -1.0 kg/ha/a (Figure 1b). The largest decrease in NO_3^- wet deposition was found in southeastern Canada. Scavenging ratios (W)

Monthly W ranged from 135-4272 for pNO₃⁻ and 7-16658 for HNO₃ (mass basis). The average scavenging ratio of HNO₃ was greater than pNO₃⁻ suggesting more efficient wet scavenging of HNO₃. Most W_{pNO3} in literature are determined from total nitrate in precipitation and pNO₃⁻ in air, which overestimates W_{pNO3} . Scavenging ratios of pNO₃⁻ based on total nitrate in precipitation are a factor of 1.4-18 higher depending on the site (average: factor of 6). Monthly W_{pNH4} ranged from 63-4356. When wet NH₃ scavenging is excluded, scavenging ratios of NH₄⁺ can be overestimated by 4-48% (average: 22%).

Relative contributions of particulates and gases to nitrate and ammonium wet deposition

Average wet scavenging contributions to nitrate wet deposition were $28\pm23\%$ for pNO₃⁻ and $72\pm23\%$ for HNO₃. %HNO₃ dominated %pNO₃⁻ at most of the sites; however the wet scavenging of pNO₃⁻ was higher at the sites closest to industrial and urban areas and at coastal sites (Figure 2a). Average relative contributions of pNH₄⁺ and NH₃ to total ammonium wet deposition were $70\pm19\%$ and $30\pm19\%$, respectively, with no distinct geographical patterns (Figure 2b). Particulate contributions to nitrate and ammonium wet scavenging were greater during cold months and lower during summer. This is consistent with the greater particle scavenging efficiency of snow compared to rain for an equivalent amount of precipitation (Zhang et al. 2015). Wet scavenging of HNO₃ can be a factor of 4 higher than that of pNO₃⁻ during warm months and also significant during cold months because of a large Henry's law constant, high absorption and retention of HNO₃ on ice crystals, and greater below-cloud snow scavenging of HNO₃ compared to rain (Chang 1984). Particle wet scavenging exceeded gas scavenging contributions to ammonium wet deposition in most months by a factor of 2.6.

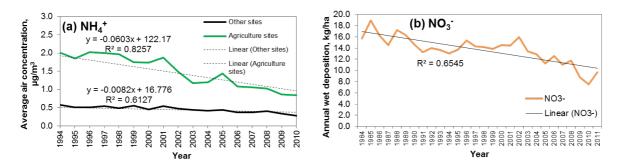


Figure 1. (a) Widespread decline in atmospheric NH_4^+ and (b) widespread decline in annual NO_3^- wet deposition in Canada.

Figure 2. Average wet scavenging contributions of (a) HNO₃ and pNO₃⁻ to nitrate wet deposition and (b) pNH₄⁺ and NH₃ to ammonium wet deposition at CAPMoN sites.

Ammonia trend

Only the EEMD-extracted long-term trend at the eight U.S. sites are shown here as an example (Figure 3). The long-term trend showed an increase in atmospheric NH_3 from 4.2 ppb in August 2008 to 6.8 ppb in July 2015 at Site 7, from 2.4 ppb in August of 2008 to 3.0 ppb in July of 2015 at Site 8, from 1.8 ppb in August of 2008 to 2.8 ppb in July of 2015 at Site 9, a complex varying pattern during the period from August 2008 to July 2015 at Site 10, and an increasing trend (by 0.3-0.5 ppb, or 100-200% in percentages) at Sites 11-14. The percentage increases (100-200%) in NH_3 mixing ratio from 2008 to 2015 at the remote sites were substantially larger than those at the rural/agriculture sites (20-50%).

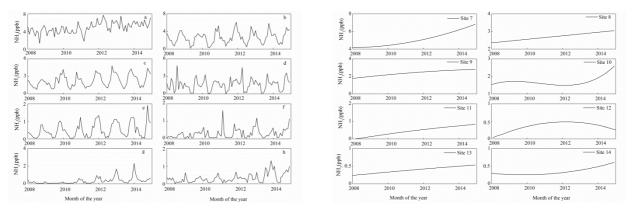


Figure 3. Monthly average NH₃ (left) and long-term trend extracted using EEMD (right) at the eight U.S. sites.

Conclusion

Widespread declines in atmospheric NH_4^+ (1994-2010) and annual wet deposition of NO_3^- (1984-2011) were observed in Canada. Atmospheric NO_3^- increased from 1991-2001 and then decreased from 2001-2010, consistent with NO_x emissions trends in Canada and in the U.S. Wet scavenging of HNO₃ dominated particulate NO_3^- contributions to nitrate wet deposition at most locations. Ammonium wet deposition was dominated by particulate NH_4^+ wet scavenging. Higher particulate wet scavenging during cold months provides further evidence of the efficient scavenging of particles by snow. Knowledge of the relative scavenging contributions of gases and particles may improve the wet deposition modeling of nitrate and ammonium.

Moderate exponential correlations between atmospheric NH_3 and ambient T were found at nine sites, implying that local biogenic emissions and/or NH_3/NH_4^+ partitioning were likely dominant factors causing the long-term trends in atmospheric NH_3 at these sites. At the four Canadian sites, no decreasing trends in atmospheric NH_3 were found despite significant decreases in anthropogenic NH_3 emissions from main sectors in the last decade. The decreased NH_3 anthropogenic emission was compensated or overwhelmed by the increased biogenic emission and/or changes in NH_3/NH_4^+ partitioning. This was supported by pNH_4^+ data which exhibited a decreasing trend, likely caused by a combination of reduced SO_2 and NO_x emission and increased temperature. The M-K analysis showed an increasing trend in atmospheric NH_3 at seven out of the eight U.S. sites, which was also supported by the EEMD-extracted results. NH_3 increased by 20-50% from 2008 to 2015 at the three rural/agriculture sites and by 100%-200% at the four remote sites.

References

- Chang TY (1984). Rain and snow scavenging of HNO3 vapor in the atmosphere. Atmospheric Environment 18(1), 191-197.
- Clair TA, Ehrman JM, Ouellet AJ, Brun G, Lockerbie D and Ro C-U (2002). Changes in freshwater acidification trends in Canada's Atlantic provinces: 1983–1997. Water Air and Soil Pollution 135(1-4), 335-354.
- Driscoll CT, Lawrence GB, Bulger AJ, Butler TJ, Cronan CS, Eagar C, Lambert K, Likens GE, Stoddard JL and Weathers KC (2001). Acidic Deposition in the Northeastern United States: Sources and Inputs, Ecosystem Effects, and Management Strategies. Bioscience 51(3), 180-198.
- Gilbert RO (1987). Statistical Methods for Environmental Pollution Monitoring. Van Nostrand Reinhold Company Inc., New York.
- Lehmann CM, Bowersox VC, Larson RS and Larson SM (2007). Monitoring long-term trends in sulfate and ammonium in US precipitation: Results from the National Atmospheric Deposition Program/National Trends Network. Water Air and Soil Pollution 7, 59-66.
- Wu, Z. and Huang, N. E. (2009). Ensemble empirical mode decomposition: a noise-assisted data analysis method. Advances in adaptive data analysis 1, 1-41.
- Zhang L, Cheng I, Muir D and Charland J-P (2015). Scavenging ratios of polycyclic aromatic compounds in rain and snow at the Athabasca oil sands region. Atmospheric Chemistry and Physics 15, 1421–1434.