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Abstract 
Ammonia (NH3) released to the atmosphere leads to a cascade of impacts on the environment, yet estimation 
of NH3 volatilization from cropland soils (VNH3) in a broad spatial scale is still quite uncertain in China. This 
mainly stems from non-linear relationships between VNH3 and relevant factors. Based on 495 site-years of 
measurements at 78 sites across Chinese croplands, we developed a nonlinear Bayesian Tree Regression 
model to determine how environmental factors modulate the local derivative of VNH3 to nitrogen application 
rates (Nrate) (VR, %). VNH3-Nrate relationship was non-linear. VR of upland soils and paddy soils depended 
primarily on local water input and Nrate, respectively. Our model demonstrated good reproductions of VNH3 
compared to previous models, i.e., more than 91% of the observed VR variance at sites in China and 79% of 
those at validation sites outside China. The observed spatial pattern of VNH3 in China agreed well with 
satellite-based estimates of NH3 column concentrations. The average VRs in China derived from our model 
were 14.8 ± 2.9% and 11.8 ± 2.0% for upland soils and paddy soils, respectively. The estimated annual NH3 
emission in China (3.96 ±0.76 TgNH3·yr-1) was 40% greater than that based on the IPCC Tier 1 guideline. 
 
Key Words 
Ammonia volatilization, atmospheric ammonia, cropping system 
 
Introduction 
Ammonia (NH3) volatilization has doubled globally since 1860 and may double again by 2050. Fertilizer 
use, as the secondary contributor to NH3 emissions after livestock production, accounts for more than 30% of 
anthropogenic NH3 volatilization. Uncertainties in the estimates of NH3 emissions from cropland are as large 
as 50%. Apart from lack of high-resolution statistics on fertilizer use, differences in climate and agricultural 
practices are essential when upscaling site-scale NH3 fluxes to regional, national or continental budgets. 
Recent field experiments indicate that the responses of NH3 emissions (VNH3) from cropland to N 
application rate (Nrate) are quadratic or exponential, rather than linear, as assumed by the Intergovernmental 
Panel on Climate Change (IPCC Tier 1) guidelines. Here, we characterize the nonlinearity and variability of 
the response of VNH3 to Nrate (including synthetic fertilizers, manure, and crop residues) and environmental 
factors (hereafter xk) across Chinese croplands, using a synthesis of NH3 flux measurements from field trials.  
 
Methods 
Nonlinear model 
We collected 195 VNH3 measurements (209 for upland soils and 286 for paddy rice) started from 1990 over 
Chinese cropland from 90 peer-reviewed publications, which is 2-fold larger than those used in previous 
studies. Thirteen factors (i.e., N application rate, fertilizer type, crop type, water input, mean air temperature, 
soil organic carbon content, soil pH, soil clay content, bulk density, soil nitrogen content, cation exchange 
capacity, sample frequency) were considered as potential predictors in the model. Due to lack of information 
about fertilization methods and tillage practices in the surveyed literature, those factors were not considered 
in the following analysis. A nonlinear model of VNH3, Peking University NH3 model (PKU-NH3), was then 
calibrated by the Bayesian Recursive Regression Tree algorithm version 2.0 (BRRT v2) to estimate VR and 
VNH3 for Chinese cropland in 2008 and to assess how xk modulate VRs. The results of the PKU-NH3 model 
are then compared with those of widely used linear models based on country- or regional-scale VR values for 
predictive accuracy of VR and VNH3 at observation sites. The upscaling power of the PKU-NH3 model is also 
checked through validation using independent atmospheric observations. 
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Results 
Model performance 
We calibrated the PKU-NH3 model using site data in China for predicting the response of VNH3 to Nrate. The 
relevant predictors for both the sub-equation division and the regularized regression are Nrate, water input and 
clay content for upland soils, and Nrate, water input, and Temp for paddy soils. Figure 1A-1D show that PKU-
NH3 model with nine variables (including intercept) is able to explain 93% and 91% of the variances for upland 
and paddy soils, respectively. The RMSEs of the simulated VRs were only 1.6% for upland soils and 2.5% for 
paddy soils, indicating a low bias in the models. Yet PKU-NH3 model significantly underestimates a few VRs. 
For example, one and three other larger discrepancies between simulated results and observations (blue circles 
in Figures 1A and 1B), for upland and paddy soils, respectively, are attributed to the fact that our models do 
not account for the effects of fertilizer type.  

 
Figure 1. Calibration and validation of VR and VNH3. Panels A or B: calibration of VRs of all site-years from 
China, panels C or D: validation of DVRs of all site-years from outside of China, panels E or F: validation of VNH3 
from the annual average total columns of NH3 in 2008 retrieved from IASI satellite observations. The full dataset 
is illustrated as red open circles, while significant underestimations and sites or pixels subject to extrapolation are 
represented as blue solid circles. All error bars for simulated VRs are one SE. The observation number (n), slope, 
R2, BIC, and RMSE are indicated in the insets of each panel. 

NH3 patterns  
The average VR values were 14.8 ± 2.9% and 11.8 ± 2.0% for upland and paddy soils, respectively, and the 
corresponding VNH3 of 3.96 ± 0.76 Tg NH3·yr-1 (1s), split into 3.36 ± 0.66 Tg NH3·yr-1 for upland soils and 
0.60 ± 0.10 Tg NH3·yr-1 for paddy soils. Figure 2A shows that VR from the PKU-NH3 model varies across 
China. The average VR over the North China Plain and Southern China are ~38% and ~29%, respectively, 
which are 4~5 times greater than over western China (7.5%). The highest VR values are found in Guanzhong 
Plain and Lianghu Plain, where most of the cereals produced. The spatial distribution of VNH3 (Figure 2B) is 
similar to that of the VRs (Figure 2A), but hotspots of VNH3 (>100 kgNH3·ha-1) are amplified in high-VR 
regions and become smoother spatial distributions in the North China Plain, Northeast Plain and Sichuan Basin 
(Figure 2B).  

To test the mapping of emission patterns over China, we also validated our estimates with IASI satellite 
observations. The IASI NH3 total columns reflect the aggregated effects of the NH3 emissions from arable 
soils and manure management. The comparison between  IASI NH3 total columns and the sum of two 
dominating sources is desirable, however, the emissions from manure management is difficult to be accurately 
estimated, owing to the lacks of wide survey on management options or considerable observations on NH3 
emission rate for each option in China. We found that county-scale VNH3 from arable soils is well correlated 
with annual amounts of manure in each of province, except for Ningxia, Xinjiang, and Fujian. Such spatial 
consistency implies the synergy between VNH3 and the emissions from manure management across most of 
China. Therefore, we believe that it is acceptable to compare VNH3 with IASI satellite observations directly for 
validating the predictability of PKU-NH3 model. The result of the regions subject to interpolation is consistent 
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with the annual average total columns of NH3, where correlation coefficient R2 is 0.53 (P < 0.01; Figure 2E). 
Although this result cannot prove the accuracy in the magnitude of VNH3, it still provides additional validation 
for the PKU-NH3 model in capturing the spatial details of NH3 emissions. 

 
Figure 2. 1-km spatial patterns of VRs and VNH3, differences with other VR models. Panel A: VRs in 2008, panel 
B: VNH3 in 2008, panel C: difference between PKU-NH3 model and M2, panel D: difference between PKU-NH3 
model and M3.  

Determinants and their effects on VRs. Water input and Nrate were found to be the most important determinant 
controlling VR for upland and paddy soils, respectively (Figures 3A and 3B). Water input can explain 78% of 
the spatial variation of VR for upland soils, while Nrate account 52% for paddy soils. Nitrogen addition provides 
the source of total NHx availability (i.e., TAN = NH3-N + NH4

+-N) in soils, and water input probably exerts a 
control on VR by triggering the volatilization of NH3. Soil clay content and Temp are ranked second in xk next 
to water input as determinants controlling VR for upland and paddy soils, respectively, explaining 6% and 
18% of the variance in VRs accordingly.  

For the marginal effect of water input (Figures 3C and 3D), the VR of upland soils decreases from 13% to 5% 
until water input approaches ~1,100 mm, followed by a linear growth to 15% at ~2,000 mm and then a decline 
(Figure 3C). Similarly, the VR of paddy rice declines rapidly from 20% to 4.3% until reaching the amount of 
~1,200 mm, but it rises abruptly to ~25% at ~1,300 mm, and finally decreases slowly to 20%. Although these 
complex response curves were rarely detected in the manipulation experiments, they may be interpreted by 
water-induced soil N dynamics and regional differences in rice cropping systems. First, limited rain or 
irrigation events (P+I < 1,000 mm) immediately provide a solvent to increase the dissolution of TAN as well 
as the chance of absorption by soil colloids, leading to the decline in NH3 volatilization rate. Excessive water 
input  (P+I > 2,000 mm) may also enhance the infiltration of TAN to the rooting zone or the surface flow of 
TAN to rivers, which altogether decreases the fraction of soil TAN lost as NH3. On the contrary, VR increases 
when water input approaches a range between 1,000 and 2,000 mm, where such precipitation events or 
irrigation occurs at least in the North China Plain and Sichuan Basin. Possible interpretation is that the 
influences of other relevant factors may be hidden behind such marginal effect of water input on VR. Therefore, 
more analysis by using process-based model is required to simulate the effects of rainfall regime on NH3 
volatilization, which is an additional step that can be taken in the future. Second, two piecewise linear curves 
for paddy rice (Figure 3D), roughly divided at 1,200 mm, suggest two separate response functions for 
‘Northern’ and ‘Southern’ China. Figure 3D indicates that VR is larger in the regions where P+I over 1200 
mm than those where P+I less than 1200 mm. Single rice cropping systems exist in both Northern and Southern 
China, but double rice cropping systems only occur in wetter and warmer Southern China, where they require 
more water input. Additionally, agricultural water management for paddy rice in Southern China is dominated 
by the flooding-midseason drainage-frequent water logging with intermittent irrigation, which also increases 
the fraction of fertilizers and soil TAN lost as leaching or runoff. Potential of VNH3, therefore, may be declined 
from paddy soils accordingly. 

For the effect of soil clay content for upland soils, the VR can be described as a single optimum function of 
clay content (Figure 3E). VR grows rapidly with clay content, starting at 4% and reaching a peak of 14% at 
Clay of 10%, before slowly falling in the range of 10%~50% (Figure 3E). This trend is understandable based 
on the physical mechanism between soil water retention and clay content, as the higher the soil clay content, 
the higher the water retention capacity. Another possible explanation is that increasing soil clay content leads 
to a decrease of water conductivity, which restricts the vertical transfer of nitrogen. Thus, an increase in clay 
content may strengthen the occurrence probability of the hydrolysis of urea and other fertilizers. However, 
when clay content exceeds a threshold (e.g., 14%), the excessive water content of agricultural soils would 
enhance the dissolution and absorption of TAN, ultimately leading to lower VRs of NH3. 
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Figure 3. Functional dependence of VR upon main environmental determinants. Rank of factors contributing to 
VR of upland soils (A) and paddy soils (B). The meanings of abbreviations are explained in Data sets sub-section. 
VR is calculated for the same reference Nrate of 212 kg N·ha-1 being the mean value of the observations used for 
model calibration. Maximum thresholds of temperature, precipitation and clay content are indicated by gray 
arrows, while their minimum thresholds are indicated by red arrows. The uncertainty range (±SEM) is indicated 
in Panels C - F by gray lines. 

For the effect of temperature on VR for paddy rice (Figure 3F), it is important to find a substantial sensitivity 
across the range of 4~30 °C, which was also observed in previous control experiments (Figure 3D). The VR 
of NH3 rises only moderately from 12% to 20% at Temp ≈ 16 °C, followed by a slow decline to 16% at Temp 
≈ 30 °C. This result indicates that the VR would be stimulated by Temp because both the hydrolysis rate and 
the NH3 transfer from the liquid to the atmosphere can increase with the growth of temperature. The lag phase 
after fertilizer application would then be shorter and the initial loss rate of NH3 would be greater at high soil 
temperatures. However, NH3 volatilization may not be affected significantly by changes in temperature when 
over the optimum level (e.g., 16 °C). Volatilization could continue for a long period even at low soil 
temperature, resulting in an overall small temperature sensitivity of VR for paddy rice. 

We also represented joint effects of the two most important determinants on VRs for each crop category. For 
upland soils (Figure 3G), water input of ~2,000 mm in combination with clay content of ~30% stimulates NH3 
losses significantly up to ~22%, likely because the release of TAN from fertilizers evolves sufficiently but 
TAN leaching or runoff appears to be moderate. For paddy rice (Figure 3H), moderate Temp (~15°C) and high 
water input (~2,100 mm) appear to drive up the NH3 volatilization, leading to the highest VR (38%). Such 
responses were occasionally observed in field or laboratory studies.  

Conclusion and remarks 
PKU-NH3 is reliable in capturing nonlinear response of VR and VNH3. Water input can explain 78% of the 
spatial variation of VR for upland soils, while Nrate account 52% for paddy soils. More importantly, join 
sensitivity of ³2 factors could be a useful reference for both control experiments and process-based model. 
China’s NH3 emissions are estimated greatly larger than previous results or that based on IPCC default. 
Spatial pattern and temporal trends of emissions from both China and globe need to be re-estimated using 
our model in future, and NH3 mitigation protocol could be refined and effective when considering the 
spatially-differential sensitivity to fertilizer reductions. 
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