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Abstract 
Is nitrogen just nitrogen from a plant´s perspective or does the form of nitrogen, inorganic or organic, 

matter? In this paper we combine data from several experiments in which the form of nitrogen (N) supplied 

to plant, but not the amount, was varied. We present data from a breadth of systems spanning the model plant 

Arabidopsis where intrinsic responses in carbon (C) allocation patterns could be observed in the absence of 

microbial interactions on sterile agar to pot-grown conifer trees where a DNA metabarcoding approach was 

used to describe the root associated microbiome. Taken together, these studies point to a fundamental 

difference between organic and inorganic N as nutritional sources for plants and microbes. Our results 

provide evidence that organic N, in contrast to inorganic N, promotes growth of roots, root hairs and 

mycorrhizal fungi. Biochemical shifts in C contents of shoots and roots suggest a C-bonus from organic 

compared to inorganic N, possibly explained by a smaller fraction of C partitioned to N assimilation. 
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Introduction 

Early studies illustrated that plants are well suited to take up and grow in a nutritionally replete condition on 

many different organic nitrogen forms (Hutchington and Miller 1911) in addition to the inorganic forms 

ammonium and nitrate. In the period that followed World War II this view narrowed as the importance of 

inorganic N was recognised as the driving force behind impressive productivity gains that were achieved 

during the green revolution. As a historical consequence then, this view more or less prevails when considering 

both natural ecosystems and agriculture. Beginning in early 1990s a series of seminal papers rejuvenated the 

scientific interest of plant organic nitrogen nutrition (Chapin et al. 1993; Näsholm et al. 1998; Paungfoo-

Lonhienne et al. 2008). Following on from these studies, molecular, physiological and ecological studies have 

demonstrated the intrinsic capacity of plants to acquire and use simple organic nitrogen compounds. For 

instance, transporters mediating root uptake of amino acids have been identified in and functionally 

characterised using forward and reverse genetic approaches with the expression of these genes shown to 

correlate in the presence of amino acids in the root media (Hirner et al, 2006). Also, new methodology to study 

soil nitrogen fluxes using a minimal invasive in situ microdialysis technique has indicated that amino acids are 

potentially much more prevalent in soils in a range of different ecosystems than previously recognized 

(Inselsbacher and Näsholm 2012; Brackin et al. 2015). The extent to which organic N is used by plants is, 

however, inherently difficult to study and no method is currently available that enables us to quantify organic 

N nutrition of plants. Consequently, the debate on the potential quantitative role has lingered and consensus is 

yet to be reached in this matter. 

 

The current contribution takes a different approach to the issue of plant organic N nutrition by focussing on 

the inherent biochemical differences between organic and inorganic nitrogen forms and the ramifications of 

these differences for plant performance, physiology and soil ecology. We report on differences in plant 

performance and biomass partitioning from studies of small Arabidopsis plants grown in sterile culture as well 

as from studies of conifer seedlings grown in pots. We then broad our discussion to consider the distinct 

differences in effects of organic and inorganic N on the soil microbiome with a focus on root-associated 

ectomychorrhiza. Based on these results we speculate that in addition to the quantities of N available to plants, 
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the composition of the soil N pool has a strong impact on plant growth and partitioning of biomass, which may 

in part be facilitated by a shift in the composition of soil and root associated microbiome.  

 

Results and Discussion 

Biomass allocation 

To a degree, plant growth and development is plastic and responsive to the environment. In order to first 

examine the potential extent of the inherent plasticity of the plant in the absence of microbial interactions, 

sterile conditions were used to provide a simplified system where different N forms can be applied in known, 

stable and equivalent concentrations (for methods see Cambui et al. 2011). On sterile media Arabidopsis root 

biomass allocation is significantly higher both in relative and absolute terms in response to a sole N source of 

glutamine compared to an equivalent N level supplied as nitrate (Fig. 1). The differences in the gradient of 

the respective lines of best fit illustrate a fundamental developmental shift at a whole plant level is dependent 

on N-form. 

 
 
Figure 1. Shoot and root biomass of small Arabidopsis plants grown on agar plates and supplied with 

either 3 mM nitrogen either in the form of nitrate (blue diamonds) or glutamine (red squares). Plants 

were grown for three weeks under standard conditions (see Cambui et al. 2011) and shoots and roots 

harvested. 

 

In the same Arabidopsis plants, C concentrations of shoots increased from 35 to 39 % and for roots 

from 38 to 40 % of dry weight. Although a crude indication of metabolic patterns of partitioning, these 

data suggest organic N has a significant impact on the C-status of plants. As glutamine contains 

carbon and is more highly reduced than nitrate, it is plausible the higher C-concentration in roots and 

shoots from plants grown with a glutamine N source is a consequence of a lower demand for C 

required in nitrate assimilation through to the GS-GOGAT cycle. Alternatively, N form-dependent 

influences on C-concentration may also represent a shift in C allocation between storage and growth. 

Interestingly, the most heavily down regulated genes in response to glutamine- relative to nitrate-

grown plants observed in a microarray study coupled to this experiment are Rubisco small chain 

subunits, which points to a regulated decrease in allocation to photosynthetic machinery.  

 

In addition to the N-form dependent shifts in physical and metabolic C allocation observed at the 

whole plant level, subtle but functionally important differences can also be observed within tissues. In 

most crops root development does not typically generate a direct economic return, however relatively 

small C investments below ground may indirectly amplify above ground yield. For instance, we 

observed root hair length in glutamine fed Arabidopsis on sterile plates to be stimulated 3-fold. While 

this represents a significant increase in root surface area for the amount of C allocated, in reality it is 

small compared to the potential efficiency gains in N and water uptake that can be leveraged by a 

plant’s C investment in mutually beneficial relationship with ectomycorrhizal (ECM) fungi. ECM 

interactions (Fig. 2A & 3) and root development (Fig. 2B) were therefore considered in soil-grown 

trees. For this purpose we used a selection of Pinus radiata tree clones grown in pots and treated with 

equivalent N levels of either ammonium nitrate or L-arginine. An increase in lateral root branching 

and overall growth in response to organic N compared to inorganic N (Fig. 2B).  

 

A N-form treatment effect was observed in the ECM colonisation rate (Fig. 2A). When classified by 

order, that is by the physical branching relationship to the root system architecture, the ECM 

colonisation rate was about 20% higher in L-arginine treated trees compared to ammonium nitrate 
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treated tree. As a rough quantitative measure, this suggests a greater C allocation to ECM is afforded 

under the conditions created by an L-arginine treatment.

 
 
Figure 2. ECM colonisation rates across five greenhouse-grown Pinus radiata genotypes in response to L-

arginine (purple rombs) and NH4NO3 (red squares). Points represent the rate of colonisation resulting 

from the assessment of ca. 250 intersections by treatment and genotype for respective root orders (order 1 

roots are most distal, order 2 roots are defined by the branching of an order 1 root and so on) (A). A 

photograph of Pinus radiata roots from cuttings grown in forest nursery containers treated with N-

equivalent levels of N as either ammonium nitrate (left) or L-arginine (right). This was taken from an 

independent experiment to that used for the ECM and metabarcoding study described herein (Bar = 5 

cm) (B).

 

 

Study of the soil rhizosphere communities 

Two Pinus radiata clones were identified for a comparative study of ECM communities from a screen 

of ten based on their different growth responses to inorganic or organic N. The clones selected 

displayed either an increase in total biomass in response to L-arginine versus ammonium nitrate (clone 

1) or were neutral (clone 2). We then used high throughput next generation sequencing technologies to 

describe soil and root associated microbiome communities. We used the MiSeq® sequencing platform 

to generate metabarcoded DNA sequence representative of the fungal community present in soil and 

root associated samples taken from the two greenhouse-grown Pinus radiata clones treated with 

equivalent N levels of either NH4NO3 or L-arginine. Filtered and quality controlled sequence data was 

generated using the UPARSE pipeline (Edgar, 2013) that could be assessed for community richness 

and composition (Fig. 3). 
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Figure 3. Mean relative abundances of ECM-fungal phyla (A) and class (B) in response to the addition of 

the two N-forms. Mean was obtained from pooling relative abundances of two P. radiata genotypes (n = 6). 

The asterisk highlight significant phylogenetic differences across N treatments (*P < 0.05). 

 

The ECM community structure displayed a N-form treatment-induced difference, albeit only to the 

level of phyla owing to the current poverty of fungal sequence databases relative to actual biodiversity. 

Our biological interpretation of the metabarcoding data is thus cautioned by a distinction between 

observed versus functional richness and structure. As these measures are based on the conventional 

arbitrary sequence similarity cut off of 97 % to define operational taxonomic units (OTUs), functional 

richness and structure may indeed be influenced by a dominant role that may not be reflected by 

sequence abundance. Nonetheless it does appear that the host tree in this case, as the supplier of C to 

the plant-microbiome economy can influence the microbiome in manner that depends on the N 

environment. 

 

Conclusions 

Nitrogen availability is known to exert a strong control over plant growth, biomass partitioning and 

soil microbiome and N fertilizers are key drivers of productivity in managed ecosystems. The current 

study shows that not only the N-amount, but also the N-form controls these features. The influence of 

N-form on whole plant C allocation patterns and the complex and dynamic interaction with the soil 

microbiome justifies greater effort in seeking a deeper understanding of organic N as a driver of 

natural variability in N-related productivity as well as N-management in agriculture and forestry. The 

greater partitioning of growth to roots, fine roots and mycorrhiza resulting from organic N is a 

candidate point of intervention to improve both nitrogen and water use efficiencies. 
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