DMPSA application reduces N_2O emissions from exogenous NH_4^+ and NO_3^- sources in irrigated maize Sonia García-Marco¹, Guillermo Guardia¹, Alberto Sanz-Cobena¹, Laura M Cardenas², Elizabeth R Dixon², Miguel Ángel Repullo² and Antonio Vallejo¹ ¹Chemistry and Food Technology Department, E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid, Spain <u>sonia.garcia@upm.es</u>; <u>guillermo.guardia@upm.es</u>; <u>a.sanz@upm.es</u>; antonio.vallejo@upm.es ²Rothamsted Research, North Wyke, Okehampton, Devon EX20 2SB, UK <u>laura.cardenas@rothamsted.ac.uk</u>; liz.dixon@rothamsted.ac.uk ## **Abstract** Agriculture is a major anthropogenic source of nitrous oxide (N₂O). Application of nitrogenous (N) fertilizers enhances the emission of this greenhouse gas (GHG), mainly due to the biogenic processes of nitrification and denitrification. The use of nitrification inhibitors (NIs), that delay the microbial oxidation of NH₄⁺ to NO₃⁻, has been reported as a successful tool for mitigating N₂O losses. In this context, a field experiment using ¹⁵N labeled fertilizers was carried out in an irrigated Mediterranean maize field aiming to evaluate the effectiveness of the NI 2-(3,4-dimethyl-1H-pyrazol-1-yl) succinic acid isomeric mixture (DMPSA) on mitigating N₂O emissions, and assess the processes involved in its production. The experiment, performed in 1 m² microplots, involved the application of ¹⁵NH₄NO₃ or NH₄¹⁵NO₃⁻ (with and without DMPSA) to quantify the amount of N₂O coming from exogenous NH₄⁺, exogenous NO₃⁻ and endogenous soil N. The resulting N₂O fluxes confirmed that the addition of DMPSA led to a significant (54%) abatement of this GHG. In this experiment, both nitrification and denitrification were partially inhibited by DMPSA. When NI was not applied, the largest N₂O emissions were expected from NH₄⁺ than from NO₃⁻-based fertilizers due to nitrification. # **Kev Words** ¹⁵N, nitrous oxide, nitrification inhibitor, 2-(3,4-dimethyl-1H-pyrazol-1-yl) succinic acid isomeric mixture, Mediterranean climate, maize ## Introduction Agriculture accounts for 12% of the global anthropogenic GHGs emissions and is considered the most important source of non-CO₂ (N₂O and CH₄) GHGs (IPCC 2014). The production or consumption of N₂O is the result of different and simultaneous microbial processes, mainly nitrification and denitrification (Firestone and Davidson 1989). These processes are highly dependent on soil physico-chemical properties, which in turn can be easily modified by management practices and by climatic parameters (Snyder et al. 2009). Many authors (Akiyama et al 2010, Abalos et al 2014) and IPCC Assessment Reports suggest that the application of N fertilizers including nitrification inhibitor compounds (NIs) could abate atmospheric N₂O emissions and be an effective mitigation option. Nitrification inhibitors are compounds that delay the bacterial oxidation of NH₄⁺ to NO₃⁻ in the soil for a certain period of time due to bacteriostatic effect on nitrifiers (*Nitrosomonas* bacteria), and consequently reducing N₂O production during nitrification. Although NIs such as diciandyamide (DCD) and 3, 4 dimethylpyrazol phosphate (DMPP) have been broadly evaluated under several climatic and management conditions, the effect of the new inhibitor 2-(3,4-dimethyl-1H-pyrazol-1-yl) succinic acid isomeric mixture (DMPSA) on processes involved in N₂O emissions remains unstudied. So, a field experiment with ¹⁵N labelled N fertilizer was carried out with the aims: (1) quantifying the effect of application of DMPSA on N₂O emissions from soils in an irrigated Mediterranean maize field and (2) assessing the processes involved in its production via quantification of the amount of N₂O coming from exogenous NH₄⁺, exogenous NO₃⁻ and endogenous soil N. Our main hypothesis was that DMPSA could reduce the emission of N₂O as opposed to the addition of N fertilizer alone; and that the inhibition of oxidation of NH₄⁺ could be the most effective strategy to mitigate N₂O, particularly in this Mediterranean area, where nitrification is of major relevance (Aguilera et al. 2013). ## Methods Field site and soil characteristics The field experiment was carried out at the field station "El Encín", situated near Alcalá de Henares (Madrid, Spain), in the middle of the Henares river basin, (latitude $40^{\circ}32^{\circ}N$, longitude $3^{\circ}17^{\circ}W$). According to the Soil Taxonomy of USDA, the soil was a *Calcic Haploxerept* with clayey loam texture (28% clay, 17% silt, and 55% sand) in the upper horizon (0-28 cm). The basic topsoil characteristics were: total organic carbon, $8.2 \pm 0.4 \text{ g kg}^{-1}$, total nitrogen, $0.75 \pm 0.12 \text{ g kg}^{-1}$, bulk density, $1.41 \pm 0.03 \text{ Mg m}^{-3}$, soil: water pH 7.6, and CaCO₃ $13.1 \pm 0.3 \text{ g kg}^{-1}$. According to data from the meteorological station situated in the field, the mean annual average temperature and rainfall during the last 10 years was 13.5°C and 402 mm, respectively. # Experimental design and procedure A randomized complete design with three replicates was established. Twelve microplots (1m x 1m) were used for this experiment. Each microplot received labeled ¹⁵NH₄NO₃ or NH₄¹⁵NO₃ (25 atom % made from 98 atom % fertilizers (Campro Scientific GmbH, Berlin, Germany) and unlabeled NH₄NO₃) and with and without DMPSA inhibitor (provided by EuroChem Agro). Those treatments were applied as a top-dressing (on 24th June) at a rate of 180 kg total N ha⁻¹ (half as ¹⁵NH₄NO₃ or NH₄¹⁵NO₃ and the other half as NH₄NO₃). The proportion of DMPSA in the fertilizer was that recommended by the manufacturer, i.e. 0.8% of the NH₄⁺-N applied. The treatments applied, their designation and application rate are summarized in Table 1. Table 1 Treatments applied in ¹⁵N microplots. | Treatment applied | Designation | N rate
(kg N ha ⁻¹) | |------------------------------------|-------------------------|------------------------------------| | $^{15}NH_4NO_3 + NH_4NO_3$ | ¹⁵ AN | 90 + 90 | | $NH_4^{15}NO_3 + NH_4NO_3$ | $A^{15}N$ | 90 + 90 | | $^{15}NH_4NO_3 + NH_4NO_3 + DMPSA$ | ¹⁵ AN+DMPSA | 90 + 90 | | $NH_4^{15}NO_3 + NH_4NO_3 + DMPSA$ | A ¹⁵ N+DMPSA | 90 + 90 | A solution of 2 L of each treatment was prepared and homogenously spread over the soil surface of the microplots with a hand sprayer. Phosphorous 50 kg P ha⁻¹ as simple superphosphate ($Ca(H_2PO_4)_2$) and K fertilizers 150 kg K ha⁻¹ as potassium sulfate (K_2SO_4), both provided by EuroChem Agro, were applied to all treatments at the time of sowing . Maize (*Zea mays* L. FAO class 600) crop was sown in microplots on 17th April at a plant population density of 7.5 plants m⁻². Harvesting took place on 24th October of the same year. Irrigation was applied from sowing until 4th September by sprinkler method. A total amount of 705 mm of water was applied over 44 irrigation events. During the experiment, gas, soil and plant samples were collected to measure the enrichment and amount of N. Gas samples from the microplots receiving labeled ¹⁵NH₄NO₃ or NH₄¹⁵NO₃ fertilizer were taken after 60 min static chamber closure 3, 4, 6, 8, 10 and 13 days after fertilizer application. The concentration of N₂O was measured by GC using a HP-6890 gas chromatograph with a HTC-3 Headspace autosampler (Agilent Technologies, Spain). HP Plot-Q capillary columns transported gas samples to a ⁶³Ni micro electron-capture detector (μECD). Helium as carrier and Ar/CH₄ as make up gases were used. ¹⁵N enrichment of N₂O contained in the gas samples was measured using a TG2 trace gas analyser interfaced to a 20-22 isotope ratio mass spectrometer (both from SerCon Ltd., Crewe, UK) at Rothamsted Research North Wyke. Solutions of 6 and 30 atom% ammonium sulphate ((NH₄)₂SO₄) were prepared and used to generate 6 and 30 atom % N₂O (Laughlin et al. 1997) and used as reference and quality control standards. During the experiment, the mean natural abundance of atmospheric N₂O (0.3663 atom% ¹⁵N) was subtracted from the ¹⁵N enrichment of the samples to calculate the atom percent excess (ape). To obtain the N₂O flux that was derived from fertilizer (N₂O –N_{dtf}), the following equation was used: $$N_2O - N_{dff} = (N_2O - N) \times \left(\frac{N_2O - ape_{sample}}{ape_{fertilizer}}\right)$$ In the above equation, N_2O-N' is the N_2O emission from soil, ' N_2O-ape_{sample} ' is the ¹⁵N atom% excess of emitted N_2O (being equal to '¹⁵N atom% of measured samples' minus 0.3663 atom% where 0.3663 atom% is the mean natural ¹⁵N abundance of 'background N_2O ' obtained in our experiment), and 'ape_fertilizer' is the ¹⁵N atom% excess of the applied fertilizer (Loick et al. 2016). To obtain the N₂O flux that was derived from soil $(N_2O - N_{dfs})$, the following equation was used: $$N_2O - N_{dfs} = 100 - (N_2O - N_{df15AN}) - (N_2O - N_{dfA15N})$$ In the above equation, ' N_2O-N_{df15AN} and N_2O-N_{dfA15N} ' is the N_2O flux that was derived from fertilizer $^{15}\mathrm{NH_4NO_3}$ ($^{15}\mathrm{AN}$) or $\mathrm{NH_4}^{15}\mathrm{NO_3}$ ($\mathrm{A}^{15}\mathrm{N}$) respectively. ## Results N_2O fluxes measured in the microplots confirmed that the addition of DMPSA led to a significant (54 %) abatement of N_2O emissions (Figure 1). Figure 1. N_2O emissions (mg N m⁻² d⁻¹) in microplots during the first month after N fertilization. Vertical bars indicate standard errors. The amount of N_2O coming from exogenous NH_4^+ , exogenous NO_3^- and endogenous soil N during the week in which the peak occurred is shown in Figure 2. Figure 2. (a) Amount of N_2O coming from ^{15}AN , $A^{15}N$ and soil N in microplots without DMPSA addition and (b) amount of N_2O coming from ^{15}AN and $A^{15}N$ and soil N in microplots with DMPSA addition. Our results revealed that exogenous NH₄⁺ (¹⁵AN) was the main source of N₂O emissions in the NH₄NO₃ microplots without DMPSA application: 67% of N₂O losses came from ¹⁵AN treatment in two days in which emission peaks were observed (3 and 6 days after N addition). These results showed that NH₄⁺-based fertilizers have the potential risk of increasing N₂O losses compared to NO₃⁻-based sources under Mediterranean conditions. In agreement, the review of Aguilera et al. (2013) pointed out that nitrification is the major source of N₂O losses in low C-content Mediterranean soils. The amount of N₂O coming from ¹⁵AN+DMPSA treatment was much lower than in the ¹⁵AN treatment (*P*<0.05). The amount of N₂O released from soil mineral N was also numerically (but not statistically) higher in NH₄NO₃ than in NH₄NO₃+DMPSA microplots. Furthermore, our results demonstrated the high effectiveness of NIs when soil conditions are favorable for NH₄⁺ oxidation, abating N₂O losses from both nitrification (directly) and denitrification (indirectly, by decreasing the availability of the substrate -NO₃⁻- for denitrifiers) (Firestone and Davidson 1989). The application of DMPSA also reduced N₂O emissions from exogenous NO₃⁻ (A¹⁵N) suggesting a possible effect of NI on denitrifier microorganisms. Further research is needed to elucidate this point. ## Conclusion Our results demonstrate that application of DMPSA with ammonium nitrate provide a suitable option to improve environmental sustainability, diminishing N_2O emissions. A large proportion of N_2O losses came from the oxidation of NH_4^+ , the use of NO_3^- -based fertilizers could also be considered as a potential N_2O mitigation strategy under similar environmental conditions as those found in this irrigated Mediterranean maize field. ## Acknowledgements The authors are grateful to the Spanish Ministry of Science and Innovation (AGL2015-64582-C3-3-R) and the Community of Madrid Regional Government (Project AGRISOST S2013/ABI-2717) for their financial support. Funding for this research was also provided by EuroChem Agro GmbH. Rothamsted Research is sponsored by the BBSRC. ## References - Abalos D, Jeffery S, Sanz-Cobena A, Guardia G and Vallejo A (2014). Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency. Agriculture, Ecosystems & Environment 189, 136-144. - Aguilera E, Lassaletta L, Sanz-Cobena A, Garnier J and Vallejo A (2013). The potential of organic fertilizers and water management to reduce N₂O emissions in Mediterranean climate cropping systems. A review. Agriculture, Ecosystems and Environment 164, 32-52. - Akiyama H, Yan X and Yagi K (2010). Evaluation of effectiveness of enhanced-efficiency fertilizers as mitigation options for N₂O and NO emissions from agricultural soils: meta-analysis. Global Change Biology 16(6), 1837-1846. - Firestone MK, Davidson EA (1989). Microbiological basis of NO and N₂O production and consumption in soil. In Exchange of trace gases between terrestrial ecosystems and the atmosphere. Eds MO Andreae, DS Schimel. pp 7–21, John Wiley & Sons, New York. - IPCC (2014). Summary for Policymakers. In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Eds O Edenhofer, R Pichs-Madruga, Y Sokona, E Farahani, S Kadner, K Seyboth, A Adler, I Baum, S Brunner, P Eickemeier, B Kriemann, J Savolainen, S Schlömer, C von Stechow, T Zwickel and JC Minx. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. - Laughlin, R. J., Stevens, R.J. and Zhuo, S. (1997). Determining nitrogen-15 in ammonium by producing nitrous oxide. Soil Science Society of America Journal 61, 462-465. - Loick N, Dixon ER, Abalos D, Vallejo A, Matthews P, McGeough KL, Well R, Watson CJ, Laughlin RJ, Cardenas LM (2016). Denitrification as a source of nitric oxide emissions from incubated soil cores from a UK grassland soil. Soil Biology and Biochemistry 95, 1-7. - Snyder CS, Bruulsema TW, Jensen TL and Fixen PE (2009). Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agriculture, Ecosystems and Environment 133, 247–266.