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Abstract 
Recent climate changes have affected wheat crops in Australia. Changes in drought, heat and frost 
stress affecting a mid-maturing cultivar sown on May 15 were quantified using the Agricultural 
Production Systems sIMulator (APSIM) including a heat and frost stress module. Between 1981 and 
2018, national drought-induced yield loss significantly increased, estimated to exceed 40% on 
average. In the simulations, the national average impact of heat-shocks on grain number and 
individual grain weight increased by 0.3% and 2.7% per decade, respectively. Frost damage 
significantly increased by 6.4% per decade while the beneficial yield impact of atmospheric CO2 
concentration increased by 1.8% per decade. Since 1981, heat-shocks and frost are estimated to have 
caused average yield losses of 15% and 14%, respectively. Rising atmospheric CO2 concentration 
compensated for 2.4% of long-term average yield loss. Overall, without improvements in crop 
genetics and management, simulated yield decreased at a significant rate of 183 kg ha-1 per decade. 
Breeding for warm and dry environments appears to be a priority to enhance yield in Australia. 
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Introduction 
The climate has changed over recent decades, and climate models project further increases in average 
temperatures and atmospheric CO2 concentration ([CO2]), more hot days, and increased variability in 
rainfalls for the near to mid future (IPCC 2012; Collins and Chenu 2021). In Australia, average 
temperature increased by 0.9oC since 1910 (CSIRO and Bureau of Meteorology, 2015). Most of the 
change occurred after 1950, with the warmest years recorded in the last decade (Suppiah et al. 2001; 
Ababaei and Chenu, 2020). Under the Representative Concentration Pathways (RCP) 8.5, which is the 
pathway most consistent with the current pace of global emissions, an increase by 2.8–5.1°C is 
projected in Australian annual mean temperature by 2080–2099, with a possible decrease in spring 
and winter rainfall (CSIRO and Bureau of Meteorology, 2015). Global warming has complex effects 
on crops, due to changes in occurrence and intensity of abiotic stress factors, CO2 fertilisation, and 
acceleration of crop development at warmer temperatures (e.g. Lobell et al. 2015). Historically, yield 
losses due to heat (Ababaei and Chenu, 2020), drought (e.g. Hochman et al. 2017; Fletcher et al. 
2020), and even frost (Zheng et al. 2015; Crimp et al. 2016) have increased in recent decades. This 
paper assesses how yield impacts of heat shocks, frost, drought and CO2 have evolved over recent 
decades in the Australian wheatbelt, and compares the impacts of these different environmental 
factors. 

Methods 
A modified version of APSIM-wheat (Holzworth et al. 2014) that accounts for impacts of frost and 
heat events (Zheng et al. 2015; Ababaei and Chenu 2020) was used to assess the changing impacts of 
heat, frost and drought stress, as well as atmospheric [CO2] on Australian wheat crops. Simulations 
were setup at 60 locations across the Australian wheatbelt (Figure 1; Chenu et al. 2013) for the mid-
maturing cultivar Janz sown on Apr 15, May 1, May 15 and June 1. Weather data were collected from 
the SILO patched point dataset (Jeffrey et al. 2001) for the period 1981-2018. Monthly [CO2] data 
were obtained from Ziehn et al. (2016) for one set of simulations, and kept at the 1980 level in another 
set of simulations conducted to evaluate the impact of atmospheric [CO2]. 

At each location, soil characteristics and fertilisation levels were set to represent local soils and 
farming practices (Chenu et al. 2013). Each year, initial soil conditions were reset on November 1 
with soil nitrogen as per Chenu et al. (2013) and a 20% soil moisture.  A small amount of irrigation 
was applied at sowing, when needed, to raise soil moisture of the soil top layer and allow germination 
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the day after sowing. An additional set of simulations was conducted with irrigated crops. The yield 
impact of drought was defined as the yield difference between fully irrigated and rainfed crops. 
Significance of trends were assessed with the Mann-Kendall test combined with the Trend Free Pre-
whitening procedure (Yue et al. 2002). 

Figure 1. The Australian wheatbelt and the 60 studied sites in the East (red), South-East (blue), South 
(green) and West (purple). 

Results and discussion 
Frost has become more frequent and impactful 
In the studied period (1981-2018), grain yield losses due to frost were estimated to be in excess of 
14% nationally for a mid-maturing cultivar sown on May 15 (Figure 2). The impact of frost is 
particularly high in the East and South-East but was substantial in all regions. 

Frost occurrence has significantly decreased over the last few decades in almost half of the north-
eastern part of the Australian wheatbelt, while it has increased in other regions with, in addition, an 
extension of the frost season (Zheng et al. 2015; Crimp et al. 2016). Increased temperatures from 
global warming are expected to accelerate crop development, which could counter-intuitively increase 
the chance of frost at sensitive post-heading stages (Zheng et al. 2012). Between 1981 and 2018, frost-
induced yield loss has increased by 6.4% per decade in Australia (Figure 3). 

Figure 2. Regional average frost, heat, drought and total yield loss along with the positive impact of 
atmospheric [CO2] for four sowing dates for the 1981-2018 period. Dashed lines correspond to average 
simulated grain yield. Error bars correspond to 90% confidence intervals. 

Heat shock has been a major limiting factor 
Heat events were associated with a 15% yield loss, nationally, for a mid-maturing cultivar sown on 
May 15, with larger impacts in the eastern part of the wheatbelt (Figure 2; Ababaei and Chenu 2020). 
From 1985 to 2017, the frequency of daytime heat shocks has significantly increased across the 
wheatbelt, with an extra 0.6 and 1.2 hot days (maximum temperature > 26°C) per decade occurring 
around anthesis and during early-mid grain filling respectively (Ababaei and Chenu 2020). By 
contrast, the occurrence of warm nights (minimum temperature > 17oC) has not significantly changed 
in most regions (Ababaei and Chenu 2020). From 1981 to 2018, heat-induced yield loss has increased 
by 2.8% per decade nationally (Figure 3), increasingly affecting grain size (2.7% per decade) more 
than grain number (0.3% per decade). 
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Figure 3. Linear trends in frost- and heat-induced yield loss over 1981-2018 for three sowing dates. Points 
circled in black represent statistically significant trends (P<0.1).  

In addition, the increase in average temperature has an impact on the crop development, and resulted 
in shortening the crop cycle by 1.3 days per decade over 1981-2018 for a mid-maturing cultivar sown 
on May 15 (data not presented; Ababaei and Chenu 2020). Accelerated phenology helps reduce crop 
exposure to terminal heat and drought stress (Chenu et al. 2013; Lobell et al. 2015) but at the same 
time reduces the time for assimilation and thus potential yield (Zheng et al. 2012). 

Drought has been the dominant stress factor 
Drought impact, defined as the yield difference between fully irrigated and rainfed crops, has been 
responsible for a 42% yield loss for a mid-maturing cultivar sown on May 15 (Figure 42).  

Drought-induced yield loss has increased nationally by 3.6% per decade from 1981 to 2018 (Figure 
4). Low water-stress environments ET1 and ET2 (as defined in Chenu et al. 2013) have become less 
frequent by 1% and 2% per decade nationally for a mid-maturing cultivar sown on May 15, and by 
9% and 5% per decade for a mid-maturing cultivar sown on April 15. 

In the near to mid future, the frequency of severe drought environments (ET3-4, Chenu et al. 2013) is 
projected to further increase in the West, but decrease in the eastern part of the wheatbelt due to 
(i) shorter crop cycle associated to warmer temperature, and (ii) greater water use efficiency
associated to increased [CO2] level (Lobell et al. 2015; Watson et al. 2017; Collins and Chenu 2021).
Nevertheless, all regions are still expected to be subjected frequent severe drought in coming decades.

Figure 4. Linear trends in drought-induced yield loss over 1981-2018 for three sowing dates. Points 
circled in black represent statistically significant trends (P<0.1). 

Atmospheric CO2 concentration increasingly fertilises wheat crops 
Rising atmospheric [CO2] concentration compensated for 2.4% of national long-term yield loss on 
average (Figure 2). The benefit of CO2 enrichment on wheat yield, through increased photosynthetic 
activity and water use efficiency, has increased by 1.8% per decade over 1981-2018 (data not 
presented) and is expected to further increase in the future (Lobell et al. 2013; Christy et al. 2018).  

Abiotic stress are increasingly affecting grain yield 
Overall, without improvements in crop genetics and management, simulated yield decreased at a 
statistically significant rate of 183 kg ha-1 per decade between 1981 and 2018.  
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With agronomic adaption of sowing dates and/or crop maturity, yield could increase in future decades 
despite the adverse effects of climatic factors such as heat events (Collins and Chenu 2021). Other 
strategies to increase yield and yield stability include management practices related to soil water 
conservation (Kirkegaard and Hunt 2010), and breeding for better adapted genotypes e.g. with higher 
transpiration efficiency (Chenu et al. 2018; Christy et al. 2018; Collins et al. 2021), greater stay-green 
(Christopher et al. 2016) or beneficial morphological traits (Hunt et al. 2018). 

Conclusion 
Over 1981-2018, abiotic stresses have increasingly impacted yield, resulting in an estimated national 
yield decreased of 183 kg ha-1 per decade, for a mid-maturing cultivar sown on May 15. Average 
simulated yield has decreased by 6.4% per decade due to frost (as increased average temperature has 
hasten flowering), 2.8% per decade due to heat shocks, and 3.6% per decade due to drought. On the 
other hand, rise in atmospheric [CO2] has allowed a 1.8% yield benefit per decade. While climate 
keeps changing, agronomic and genetic adaptations are to be sought and applied to increase yield and 
yield stability across the wheatbelt.  
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