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Abstract 
Wheat phenology is a major determinant of the adaptation of wheat to different environments. 
Although many crop models have been parameterised to predict wheat phenology, wheat breeding 
and agronomy research would benefit from robust models that quantitatively predict the interaction of 
genotype and environment based on known genes or single nucleotide polymorphisms (SNPs). In this 
study, the 90K SNP data of 55 wheat cultivars in the Australian Phenology Panel are integrating into 
wheat model in APSIM Next Generation (APSIM NG) to predict traits related with wheat phenology. 
Here we report the results for leaf appearance rate. The datasets collected from controlled 
environments and field experiments are used to calibrate and validate the wheat model in APSIM NG 
(APSIM-Release) and the new integrated genomic model (APSIM-GS) with different strategies. The 
model parameter values are estimated using global optimizations. Both APSIM-Release and APSIM-
NG could predict the leaf appearance rate for 55 cultivars with an acceptable level of accuracy?  
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Introduction 
Phyllochron, defined as the thermal time duration for a leaf to fully emerge, is one of the key 
determinants for leaf area development and early vigor (Botwright et al., 2002). It is mainly driven by 
temperature and photoperiod (day length) with genotypic variations (McMaster et al., 2003). The 
APSIM model uses phyllochron to simulate the dynamic of leaf appearance, leaf area and 
developmental progress towards flag leaf emergence (or flowering) of wheat (Holzworth et al., 2018). 
While genetic information has been used to predict wheat phenology parameters in crop models 
(White et al., 2008; Zheng et al., 2013), no efforts have been made to derive phyllochron and its 
photoperiod sensitivity from genomic data (e.g. single nucleotide polymorphisms (SNPs)). In this 
study, we report on using 90K SNPs of wheat to derive parameters for APSIM to predict leaf 
appearance rate. The new SNP-based model is calibrated and validated using data from controlled 
environments and field experiments. 

Methods 
The released version of Wheat model in APSIM NG is developed using the plant modelling 
framework (PMF) (Brown et al., 2014)  The PMF is a collection of generic classes that can be 
assembled and parameterised in different ways to create different plant models and has been described 
in detail by Brown et al. (2014) and Brown et al., (2019). In this paper, we only focus on leaf 
appearance in the early stage (Huan Index < 7).  In APSIM NG, phyllochron of wheat is simulated 
using a base phyllochron (oCd) at 12 hour photoperiod and sensitivity to photoperiod (i.e. day length). 
The photoperiod sensitivity is defined as a modifier to base phyllochron, it gradually decreases from 
1.6 to 1 when day length changes from 8 to 12 hours. 

The observational data were obtained from the wheat validation datasets of APSIM NG, including 
data from both controlled environment and field experiments conducted at 12 sites in Australia and 2 

_____________________________________________________________________________________________________ 
© Proceedings of the 20th Agronomy Australia Conference, 2022 Toowoomba Qld www.agronomyaustraliaproceedings.org 



sites in New Zealand (Palmerston North and Lincoln) (Figure 1). There were 2973 observations of 55 
cultivars for leaf appearance including Haun Index (2785), appeared leaf tips (36) and appeared 
cohort numbers (152), depending on the experiments. Genomic? data were extracted using the 90K 
Illumina SNP-chip for the 55 cultivars. Missing SNPs were discarded. Finally, there were 8863 SNPs 
used in the analysis. 

 

Figure 1.  The spatial distribution of observations in the field and controlled environments  
 

The whole dataset was split into two groups for calibration and validation with 13 strategies (i.e. All 
for all experiments, CE for controlled environments, Other for non-controlled environments, Sample 
1-10 for controlled environments plus 50% others in the calibration group). One group of data were 
used to optimize the parameter values (i.e. base phyllochron and photoperiod sensitivity) for 55 
cultivars, and the other group for model validation. A wide range of values for the two parameters 
were generated with each strategy. The parameter sets with minimum MSV (mean squared variation) 
(Kobayashi and Salam, 2000) between observed and simulated leaf appearance rates were selected. 
The use of MSV is to avoid the systematic errors caused by simulations in emergence date. The 
parameter values of 55 cultivars are used together with SNP data to: 1) develop a random forest model 
to predict APSIM parameters from SNP, and 2) further using the SNP-derived parameters to run 
APSIM to simulate leaf appearance rate (APSIM-GS). The two steps are re-optimized for 55 cultivars 
in one go (i.e. Global Optimization). Consequently, a ML-RF model was developed to generate the 
base phyllochron and Pp sensitivity of 55 cultivars from SNP data.  

Results 
There was a good agreement between the observations and predictions in the calibration group (e.g. 
calibration strategy “All”, Figure 2) for APSIM-Release. The MSVs ranged from 0 to 0.7 depending 
on the cultivars and calibration strategies (Figure 3). A few cultivars in the calibration group had 
higher MSV?s if controlled environments were used for calibration. In the validation group, stable 
MSVs were observed across calibration strategies except MSVs when non-CE datasets were used for 
calibration (i.e. “Other”, Figure 3). 
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Figure 2.  Comparison of observed and predicted traits related with leaf appearance for all cultivars 
when all datasets are used in the calibration with release model of APSIM Next Generation. 

Figure 3.  The mean squared variation for traits related with leaf appearances in the calibration and 
validation groups in 13 calibration strategies when release model of APSIM Next Generation is used. 

The performance was not significantly changed when SNP data integrated with processed based 
model APSIM NG (APSIMNG-GS) for all calibration strategies (Figure 4 and Figure 5). A few 
outliers were removed in CE datasets in the calibration group. The MSVs ranged from 0 to 0.4 
depending on the cultivars and calibration strategies in the calibration group (Figure 5). Similar with 
APSIMNG-Release, in the validation group, stable MSVs were observed across calibration strategies 
except MSVs when non-CE datasets were used for calibration (i.e. “Other”, Figure 5). 

Comparing with APSIMNG-Release which had independently parameter sets for each cultivar, 
APSIMNG-GS only had one single model and parameter set for all 55 cultivars. The parameter values 
for APSIMNG-Release (i.e. base phyllochron and photoperiod sensitivity) was estimated from 
genomic selection models.  

Figure 4.  Comparison of observed and predicted traits related with leaf appearance for all cultivars 
when all datasets are used in the calibration with genomic selection integrated into APSIM Next 
Generation (APSIMNG-GS).  
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Figure 5.  The mean squared variation for traits related with leaf appearances in the calibration and 
validation groups in 13 calibration strategies when genomic selection is integrated into APSIM Next 
Generation (APSIMNG-GS).  

Conclusion 
The traits related with leaf appearance were predicted with release version of APSIM NG and a new 
SNP based model (genomic prediction + process-based model). Both models can predict leaf 
appearance of wheat in the diverse environments in different calibration strategies. The whole 
genomic selection with SNP data is sufficiently robust to predict phenotypic traits in diverse 
environments. 
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