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Abstract 
Late-Maturity Alpha-Amylase (LMA), a grain quality defect triggered by cool temperatures during grain 
filling, can be attributed to the genetic make-up of some wheat varieties. Moderate to high levels of LMA 
can cause low Falling Numbers, costly downgrades in wheat quality, and exclusion of high yielding breeder 
lines from classification into milling grades. A predictive LMA model was applied to long term (1901-2019) 
temperature data at 24 locations across the Australian wheat belt. Quantitative analysis showed a strong 
association between distinct environment types and predicted levels of LMA during grain development. A 
comparative analysis is presented for frequencies of environment types associated with LMA levels derived 
from historical temperature data and projected 2030 climate scenarios. The results suggest no notable 
impacts of the projected warmer climate by 2030 for LMA risks. Benefits of the current research include 
guiding breeders on LMA risks and more informed decisions on LMA management, with positive follow-on 
effects for producers. 
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Introduction 
Phenotypic expression of the grain defect late-maturity alpha-amylase (LMA) in some wheat genotypes has 
become a crucial issue for Australia’s wheat breeding programs, and international wheat industries. Under 
the current Australian industry guidelines, unacceptable levels of LMA expression in advanced breeding 
lines can result in failure to meet falling number standards. Susceptible wheat lines can be excluded from 
classification into milling grades and breeding material discarded. The current pass/no pass LMA screening 
system limits the potential for wheat breeding to achieve genetic gains in new high yielding lines, and thus 
limits benefits for industry and producers. 
 
While LMA is attributed to a genetic defect, it is also a complex issue controlled through genetic by 
environment interactions. Recent research has advanced knowledge of the genetics, timing and environments 
influencing LMA induction and triggering during grain filling (Derkx and Mares, 2020). LMA can be 
induced by cool-shock treatments, or periods of suboptimal mild temperatures in the absence of a cool 
treatment. Such details can further inform the predictive LMA framework recently developed to aid the 
wheat industry in quantifying actual field risks of LMA across the Australian wheat belt (Armstrong et al. 
2019). 
 
Through that research an LMA field incidence model was designed and calibrated using data obtained from 
growth environment and field trials (Mares, unpublished), and updated following publication of more recent 
experimental trials (Derkx and Mares, 2020). In addition, a new field research investment by the Grains 
Research Development Corporation (GRDC) is underway to obtain observed data for field validation of the 
LMA incidence model. This will enhance knowledge of the range of actual conditions that may trigger LMA 
in the field.  Given variable risks of experiencing the low temperature conditions that may trigger LMA 
(Armstrong et al, 2019) across the Australian wheat belt, it is logical to consider whether projected shifts to a 
warmer climate in the near future may aid in reducing the relative risks of LMA. 
  
The current study aims to examine the question by, (1) applying cluster analysis across 24 locations to 
generate a classification of environment types (ETs) based on temperature variations for a historical baseline 
period 1901-2019, and (2) apply these ETs to 2030 climate scenarios and compare the frequencies of ETs 
relative to the baseline historical period.  
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Data and Methods 
Study Region 
Twenty-four locations (Figure 1) were selected across the Australian wheat-belt with good spatial coverage 
and continuous long-term daily weather data available for 1901-2019 from the Scientific Information for 
Land Owners database (Jeffrey et al. 2001). 
 

 
Figure 1.  Map of Australia with 24 locations selected for modelling simulations with SILO patched point station 
data (Jeffrey et al. 2001) for the years 1901-2019. 
 
Historical and Future Climate 
SILO (Scientific Information for Land Owners) patched point station data (Jeffrey et al. 2001) with daily 
temperatures for baseline historical conditions from 1901-2019 was used as input for the model simulations. 
The daily weather data was also adjusted for future climate projected scenarios by 2030 for representative 
pathway concentrations RCP4.5 and RCP8.5; taken to reflect the full range of emission scenarios (e.g. 
Hassan et al. 2015). Adjusting the daily temperature data for 2030 climate conditions was done using similar 
methods as described by Hammer et al. (2020). 
 
Projected monthly changes in daily maximum and average temperature by 2030 were derived for 24 
locations (Figure 1) from analysis with 33 general circulation models (GCMs) for the reference period 1976- 
2005. Monthly changes in average temperature from August to November (i.e. associated with flowering and 
grain filling in winter wheat) were analysed to determine which GCM best represented the central tendency 
(median) of changes in average temperature for both emission scenarios among all 33 GCMs across the 24 
locations. The predicted monthly changes in daily maximum temperature (used for LMA incidence 
modelling) from the selected model (ISPL-CM5A-MR) were used to adjust the historical weather at the 24 
locations to reflect future daily climate. 
 
LMA Incidence Model Simulations 
A general framework for LMA modelling is described in Armstrong et al. (2019). In this case, the calibrated 
LMA field incidence model (unpublished, GRDC UQ00077) was applied to simulations for a reference 
wheat variety and a range of flowering dates; 15 Aug, 15 Sept, 15 Oct. The analysis focused on two key 
development periods, with Period 1 located from flowering to the start of the LMA sensitivity window, and 
Period 2 spans the LMA window considered to be the main period driving LMA incidence. Average daily 
maximum temperatures were extracted for these two periods and used for a cluster analysis of environment 
types (ETs). This allows for four general types of environment conditions to be examined, whereby both 
Period 1 and 2 can either be cooler or warmer, or Period 1 can be cooler and Period 2 warmer, or vice versa. 
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Cluster Analysis of Environment Types (ETs) 
Cluster analysis was used to define four ETs using similar concepts to Chenu et al. (2011). In this case, a 
‘Partitioning around Medoids’ (PAM) method was applied to over 8500 data points in favour of a CLARA 
(Clustering Large Applications) method, which is suited to subsampling across much larger datasets. Annual 
records derived from the 1901-2019 historical simulations were partitioned into four environment types. The 
partitioned cluster data was then reassigned into four ETs ranging from cooler (ET1) to warmer (ET4). 
Medoid values derived from the historical analysis were then applied to classify the annual results from 
simulations for the adjusted daily weather conditions (2030 climate) into four similar ETs. 
 
Frequency Analysis of ETs 
Separate frequencies were determined at the 24 locations for ETs derived for the historical baseline period 
and adjusted daily temperatures for 2030 for both the RCP4.5 and RCP8.5 emission scenarios. Frequencies 
were computed based on number of years each environment type occurred within the 119 years of 
simulations, and the relative differences were compared across the climate scenarios. 
 
Results 
Figure 2 shows the distributions of temperature changes by 2030 resulting in the choice of ISPL-CM5A-MR 
as the GCM for analysis of future climate. A comparative analysis (not shown) highlighted the strong inverse 
association between predicted LMA scores and the four ETs, as expected given the maximum daily 
temperatures in the LMA window (i.e. Period 2) are evaluated to assess the likelihood, and relative 
magnitude, of LMA incidence. Hence, ET1 and ET2 are associated with enhanced LMA incidence, while 
ET3 and ET4 are generally associated with reduced to no LMA incidence.   
 

 
Figure 2.  Change in August through October mean temperature (◦C) by 2030 relative to 1976-2005 base period 
predicted by 33 GCMs, ordered by increasing shift in average temperature change. Red line is the median 
change across all models. Chosen GCM is highlighted. 
 
The relative frequencies of ETs across the 24 locations are shown by state in Figure 3. Frequency graphs for 
the baseline scenario show a large geographical spread of the relative risks of the four ETs, with expected 
higher risks of ET1 and ET2 in more southern locations. Interestingly, results for emission scenarios RCP4.5 
and RCP8.5 indicated a relatively minor decrease in the frequency of ET1 and ET2 across the southern 
regions when compared to the baseline scenario; generally ~10 % or less. These results suggest the effects of 
global climate change may have less impact on the relative risks of LMA across the Australian wheat belt in 
the near future than might be anticipated. 
 



© 2021 Agronomy Australia Conference, 17-21 October 2021, Toowoomba, Australia. www.agronomyaustraliaproceedings.org  4 

 
Figure 3.  Frequency (%) of four environment types across the 24 station locations for the baseline period (1901-
2019) and projected changes by 2030 for greenhouse gas emission scenarios RCP4.5 and RCP8.5. 
 
Conclusion 
A calibrated LMA field incidence model was applied for simulations of multiple flowering dates at 24 
locations across the Australian wheat belt. Analysis examined changes in the frequencies of the environment 
types, associated with likely incidence of LMA, for a baseline historical period and climate warming by 2030 
for emission scenarios RCP4.5 and RCP8.5. Frequency results showed the variable geographic spread of 
risks of the cooler, more detrimental, ETs. However, the frequencies of cooler ETs between emission 
scenarios showed only minor variations despite reflecting a full range of global warming effects. The results 
suggest no notable impacts of projected warmer future climate for LMA risks in the near future. 
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