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Abstract 

Remote sensing data can be used in conjunction with crop modelling and data analysis tools to estimate the 

crop canopy nitrogen status and provide up-to-date information to underpin in-season management decisions.  

In this study cereal tissue samples were calibrated against indices calculated from satellite imagery and used 

to generate nitrogen mapping models for wheat and barley at tillering (whole plant) and heading (youngest 

emerged blade) in South Australia. 

Crop type was not significant for whole plant samples at tillering (p>0.99) but was for youngest emerged 

blade at heading (p<0.001). Biomass dilution (related to NDVI/NDRE) was the main component of variation 

in tissue N% (91% of variance), and (apart from crop type, 75% of variance) the CCCI was the main remote 

sensing component related to youngest emerged blade N% at heading (17% of variance). 

The nitrogen maps allowed agronomists to test in some fields rather than all and to use a nitrogen map 

generated using the remote sensing data as a substitute.  In conjunction with tools for management zone 

creation and nutrient prescription, the nitrogen maps were used to target nutrient application in-season with 

minimal effort on the agronomist’s behalf. 
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Introduction 

Nitrogen status assessment in the canopy of cereal crops poses a challenge to agronomists wishing to 

recommend an in-season application of nutrients. Reliance on traditional plant sampling approaches alone 

constrains the insights about the crop nitrogen to several observations in a few locations in the field. To 

create whole-field nutrient status maps and hence variable rate applications, the information about plant 

tissue test results needs to be scaled from point to field level.  

 

Fitzgerald et al (2010) developed a relationship between relative crop nitrogen content and multispectral 

sensing of the crop using ‘red edge’, red, and near infrared spectral bands. In recent years applying this 

method in the field has become more feasible with the availability of satellite data in these bands (Sentinel 

2), and outfitting drones or fixed-winged aircraft with low-cost multispectral sensors. Translating relative 

nitrogen content into actual nitrogen content requires biomass, which has been correlated to remote sensing 

indices such as NDVI in crops with incomplete ground cover (Kalaitzidis et al, 2010). The scaling of a few 

point-based observations into a spatial layer, which can be used for decision support in nutrient 

recommendations, is achieved by combining point plant test results, remote sensing data (satellite or drone 

imagery) and nutrient mapping models.  

 

This study aimed to validate the approach on field crops and highlight areas where further work might be 

required to achieve reasonable estimates of crop nitrogen content. 

 

Data description 

Crops 
Data was collected on over twenty fields of wheat and barley near Jamestown in South Australia, in July and 

October 2018. Fifty-nine tissue samples were collected at the tillering stage (whole plant) and forty-six at 

head development (youngest emerged blade). Locations for sample collection were chosen to cover the range 

of NDVI in each field, away from headlands and fencelines, and had support at a similar scale to a Sentinel 2 

pixel (10m square). Crops suffered drought from June to August, and frost on October 9th. 

 

Satellite images 

The study was originally designed to rely on drone images (in case of cloud), with Sentinel 2 as a backup. 

Ultimately the head development drone imagery acquisition failed. Fortunately Sentinel 2 images were 

available close to the sampling dates, correlated well with the drone images at tillering (not shown), and were 

ultimately used in this study. 
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Sentinel-2 data (https://earth.esa.int/web/sentinel/technical-guides/sentinel-2-msi/msi-instrument) was 

recorded for the whole season from May 1 until November 16 2018. The following vegetation indices (VI) 

were generated: NDVI, NDRE, MSAVI (Qi et al. 1994) and CCCI (Fitzgerald et al. 2010). The MSAVI 

results were very similar to NDVI and hence not shown. 

NDVI =
NIR−Red

NIR+Red
NDRE =

NIR−RedEdge

NIR+RedEdge
 CCCI =

NDRE−NDRE𝑚𝑖𝑛

NDRE𝑚𝑎𝑥+NDRE𝑚𝑖𝑛
 

Results and discussion 

 

Nutrient correlation with Remote Sensing 
Nitrogen at both tillering (whole plants) and heading (youngest emerged blade) was strongly related to 

NDRE and NDVI vegetation indices (Table 1). The NDRE and NDVI were also strongly correlated with 

each other (around 0.9; not shown). Nitrate was not well related to any multispectral band or index (Table 1). 

At the head development stage, N% and nitrate were not well correlated with the satellite data. CCCI had the 

highest correlation with N% (0.35) followed by NDVI (-0.23). 
 

Table 1: Pearson correlation for nitrogen (%) and nitrate (ppm) with remote sensing indices at tillering and 

heading. 

Nutrient/VI Range Red Edge NIR Red NDRE NDVI CCCI 

Tillering:        

N (%) 5.0-8.5 -0.29 -0.42 0.58 -0.62 -0.61 0.11 

Nitrate (ppm) 46-3390 0.14 0.15 -0.18 0.21 0.22 0.13 

Heading:        

N (%) 2.3-5.5 0.06 -0.17 0.21 -0.12 -0.23 0.35 

Nitrate (ppm) 30-423 -0.02 0.25 -0.02 0.09 0.08 0.13 

 

Model development 

The Fitzgerald et al (2010) scheme for calculating CCCI has the effect of forcing linear bounds on a 

curvilinear relationship. The variance of CCCI also increases with NDVI, a property which complicates 

model fitting. In this study log(NDRE) and log(NDVI) were calculated and used to derive a CCCI based on 

log, rather than linear index values, which also resulted in uniform variance across the range of NDVI and 

NDRE.  

 

Initial model exploration showed a Random Forest regression model (based on data reduced using Principal 

Components Analysis – PCA) produced good results fitting variation in N%. These results were not 

reproducible with a least-squares approach using the same set of input data without PCA. The PCA reduces 

the data to three dimensions: a major one (1) positively correlated with both NDRE and NDVI, a minor one 

(2) negatively correlated mostly with CCCI, and a third small component (3) describing variation 

perpendicular to the main NDRE-NDVI direction (Table 2). The loadings were similar at both measurement 

times. 

 
Table 2: Principal Components loadings on remote sensing indices across all sampling dates, and for tillering 

and heading samples separately. 

Timing All samples Tillering Heading 

Component/ 

variate 
PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3 

St. Dev. 1.577 0.716 0.012 1.414 1.001 0.008 1.519 0.833 0.019 

Log(NDVI) +0.606 +0.413 +0.680 +0.702 +0.123 +0.701 +0.612 +0.442 +0.656 

Log(NDRE) +0.620 +0.291 -0.729 +0.707 -0.006 -0.707 +0.650 +0.191 -0.736 

CCCI(logs) +0.498 -0.863 +0.080 +0.083 -0.992 +0.091 +0.450 -0.876 +0.171 

 

In attempts to predict crop N% using only remote sensing data, NDVI/NDRE becomes a proxy for biomass 
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in the relationship between crop N% and biomass.  

 

Models of tissue N 
Models of N% at tillering and heading are potentially quite different. When fitted using principal 

components calculated on remote sensing data from all samples, the main NDVI/NDRE component (1) was 

highly significant at tillering (p<0.001), with a small weakly significant effect related to the orthogonal 

NDVI/NDRE component (3, p=0.083), and no significant effect of crop (p>0.99, Table 3). At heading, the 

crop effect was highly significant (p<0.001), along with a significant positive effect related to the CCCI 

(component 2, p=0.029). The results were slightly changed with components calculated on the individual sets 

of sample data (ie tillering and heading in Table 2). No improvement could be made with components 

calculated on individual crop data with this sample set for the heading samples, nor were there significant 

interactions at heading between crop type and the principal component 2 effect (p=0.25). 

 
Table 3: Sources of variance (% sum of squares) in linear models of N% fitted to crop type (barley/wheat) and 

principal components calculated across sample times or separately for tillering and heading samples. *** 

p<0.001, * p<0.05, + p<0.1. 

Timing All samples  Separate  

Source Tillering Heading Tillering Heading 

Crop 0.0 75.2*** 0.0 75.2*** 

PC1 91.2*** 5.5 89.7*** 1.7 

PC2 1.3 17.0* 2.8 20.7* 

PC3 7.4+ 2.3 7.4+ 2.3 

Adj R2 47.9 42.0 47.9 42.0 

RMSE 0.55 0.51 0.55 0.51 
 

The final models fitted were at tillering: 

N% = 5.71 (±0.18) -0.72 (±0.12) x PC1 -13.47 (±8.31) x PC3 

And at heading: 

N% = 3.41 (±0.12) – 0.12 (±0.12) x PC2 for barley, with the additional constant 

+0.61 (±0.17) for wheat 

 

The tillering model represents a negative effect of NDVI/NDRE increase; effectively the dilution of nitrogen 

with biomass, and a positive effect with NDRE increase and NDVI decrease. This latter effect can be thought 

of as the positive effect of NDRE related to crop nitrogen content, not captured between CCCI and NDVI. 

The CCCI is an estimate of the NDRE effect with NDVI held constant. This effect is orthogonal to that; in 

physiological terms (ie Fitzgerald et al.) at constant Canopy Nitrogen Index, NDRE will be increasing as 

NDVI increases with biomass. 

 

The heading model is a more conventional model, where CCCI is positively related to tissue N%. There is no 

clear effect of biomass dilution (which would be evidenced by a relationship with NDVI, NDRE or both). 

That is consistent with the youngest emerged blade sampling method used on that sampling, which should be 

less affected than whole plant samplings and more directly related to Canopy Nitrogen Index.  

 

The difference between crops at heading could feasibly relate to the morphological differences between 

wheat and barley and their effect on the remote sensing ‘signal’. At heading the differences would be more 

pronounced. Equally, it is also possible that the generally lower barley N% reflects later development stage 

or some other confounded difference between wheat and barley in this study. 

 

Conclusion 

 

A method for development of a regional crop-type-specific nitrogen model was tested, which could be 

applied on the field-scale to monitor a crops nitrogen concentration with minimal need for plant tissue 

testing. Log transformation of NDVI and NDRE, and calculation of CCCI accordingly was suggested to 
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improve numerical consistency, and the use of Principal Components Analysis to derive the truly orthogonal 

elements of NDVI, NDRE and CCCI. For whole-plant samples at tillering, where biomass dilution was a 

factor, tissue N% was estimated mostly from the biomass dilution effect related to NDVI and NDRE, but 

also partly by the NDRE effect not captured in the main CCCI effect. For youngest emerged blade samples at 

heading, the main CCCI effect was better related and biomass dilution less a factor. There were significant 

crop type effects at heading which need to be understood further before models are applied at that stage. 
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